

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

A NOVEL DESIGN OF FOURTH-ORDER HARMONIC PASSIVE FILTERS FOR ELECTRIC POWER DISTRIBUTION SYSTEMS OPERATING UNDER NON-SINUSOIDAL CONDITIONS

By

Nehad Mokhtar Ahmed Khattab

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

A NOVEL DESIGN OF FOURTH-ORDER HARMONIC PASSIVE FILTERS FOR ELECTRIC POWER DISTRIBUTION SYSTEMS OPERATING UNDER NON-SINUSOIDAL CONDITIONS

By

Nehad Mokhtar Ahmed Khattab

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Electrical Power and Machines Engineering

Under the Supervision of

Assoc. Prof. Dr. Mahmoud Mohamed Sayed

Electrical Power Engineering Department Faculty of Engineering, Cairo University

Dr. Tarek Abd-ElBadeeh Baghdady

Electrical Power Engineering Department Faculty of Engineering, Cairo University

Assoc. Prof. Dr. Shady Hossam Eldeen Abdel Aleem

15th of May Higher Institute of Engineering, Cairo, Egypt

Assoc. Prof. Dr. Aboul'fotouh Abd-Elreheem Mohamed

Higher Institute of Engineering at El-Shorouk City, Cairo, Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

A NOVEL DESIGN OF FOURTH-ORDER HARMONIC PASSIVE FILTERS FOR ELECTRIC POWER DISTRIBUTION SYSTEMS OPERATING UNDER NON-SINUSOIDAL CONDITIONS

By

Nehad Mokhtar Ahmed Khattab

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Electrical Power and Machines Engineering

Approved by the Examining Committee:

Assoc. Prof. Dr. Mahmoud Mohamed Sayed

Assoc. Prof. Dr. Shady Hossam Eldeen Abdel Aleem
15th of May Higher Institute of Engineering, Cairo, Egypt

Prof. Dr. Essam Mohamed Aboul-Zahab

Internal Examiner

Prof. Dr. Almoataz Youssef Abdelaziz
Faculty of Engineering at Ain Shams University

Thesis Main Advisor

Advisor

External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022 Engineer's Nehad Mokhtar Ahmed Khattab

Date of Birth: 7 / 11/ 1988 **Nationality:** Egyptian

E-mail: nehad.khattab88@gmail.com

Phone: 01006498793

Address: Elshorouk City, Cairo, Egypt

Registration 01/03/2018

Date: 01/03/2018

Awarding Date:/2022

Degree: Doctor of Philosophy

Department: Electrical Power Engineering Department

Supervisors:

Assoc. Prof. Dr. Mahmoud Mohamed Said

Dr. Tarek Abd-ElBadeeh Baghdady

Assoc. Prof. Dr. Shady Hossam Eldeen Abdel Aleem 15th of May Higher Institute of Engineering, Cairo, Egypt Assoc. Prof. Dr. Aboul'fotouh Abd-Elreheem Mohamed

Higher Institute of Engineering at El-Shorouk City, Cairo, Egypt

Examiners:

Assoc. Prof. Dr. Mahmoud Mohamed Sayed (Thesis Main Advisor) Assoc. Prof. Dr. Shady Hossam Eldeen Abdel Aleem (Advisor) 15th of May Higher Institute of Engineering, Cairo, Egypt

Prof. Dr. Essam Mohamed Aboul-Zahab (Internal Examiner)
Prof. Dr. Almoataz Youssef Abdelaziz (External Examiner)

Faculty of Engineering- Ain Shams University

Title of Thesis:

A Novel Design of Fourth-Order Harmonic Passive Filters for Electric Power Distribution Systems Operating Under Non-Sinusoidal Conditions

Kev Words:

Damping Filters, Harmonic Distortion, Optimization, Power Quality, Passive Filters. Summary:

Harmonic resonance is a topic of interest in modern power system networks because it may provide a significant increase in harmonic voltage or current values. As a result, the recent tendency in power quality studies is to develop new resonance-free systems that dampen resonances and reduce harmonics. In this context, the fourth-order damped high-pass passive filter is introduced in this work as a novel filtering technique for electric power distribution systems operating under non-sinusoidal conditions, including the injected current harmonic distortion of industrial consumers, as the optimal design is obtained based on different design objectives. The filter's performance has been examined using a single objective (total demand distortion) and a group of multi-objective functions (total demand distortion of harmonic currents, a parallel resonance index, and filter cost), while maintaining the individual and total harmonic distortion limits stated in IEEE Std. 519. A comparative analysis of the different damped filters is presented to assess the proposed filter performance. Filter design success has been confirmed by the outcomes. The filter has been proven to work with multi-pulse variable speed motors and with different short-circuit capacity systems.

DISCLAIMER

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references sections.

Name: Nehad Mokhtar Ahmed Khattab Date: -- / 7/ 2022

Signature: Nehad khattab

ACKNOWLEDGMENT

My thanks and praise first and foremost go to Almighty God, the Exalted, the Lord of the universe, for giving me the knowledge, opportunity, and strength to accomplish this work.

Then, I would like to thank my supervisors, Associate Prof. Dr. Shady Abdel Aleem, Associate Prof. Dr. Mahmoud Sayed, Associate Prof. Dr. Aboul'Fotouh Abdel-Rheem, and Dr. Tarek Elboghdady for their contributions to this thesis and for their support in the field of scientific research, and I hope to keep in touch in the future.

I would like deeply to express my sincere thanks and heartiest gratitude to Associate Prof. Dr. Shady Abdel Aleem for his incomparable guidance and patience over the past years. He has always been available to guide my research in the right direction. His valuable advice, generous help and time, and constant support were the secret to achieving all this work.

I would like to thank my family for their continuous and unconditional support for all my endeavors. My father, my mother, my sisters, and my friends have been the greatest supporters in my life. I am grateful to them for their unconditional love, support, encouragement, and the sacrifices they made to help me.

Thank you all.

Contents

LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xi
LIST OF SYMBOLS	xiii
ABSTRACT	xvi
Chapter 1 : Introduction	1
1.1 Overview	1
1.2 Harmonic filtering practice	1
1.2.1 Passive power filters	3
1.3 Motivation	4
1.4 Research objectives	5
1.5 Research contributions	5
1.6 Thesis organization	7
Chapter 2 Power Quality Backgrounds and Basic Concept	8
2.1 Introduction	8
2.2 What is the importance of the PQ study?	9
2.3 What are the origins of the PQ problems?	10
2.4 Classification of PQ issues	10
2.5 Harmonics overview	13
2.5.1 Harmonics distortion	13
2.5.2 Sources of harmonics	14
2.5.3 Harmonic characteristics	15
2.5.4 Effects of harmonic distortion on power systems	17
2.5.5 Harmonic resonance	19
2.5.6 Harmonic distortion related standards	22
2.5.7 How are harmonics evaluated in the system?	24
Chapter 3: A Novel Design of Fourth-Order Harmonic Passive Filters Based on	27

3.1 Proposed fourth-order damped high-pass passive power filter (DHPF ₄)	27
3.2 System studied description	31
3.2.1 System/load evaluation metrics	32
3.2.2 Harmonic pollution evaluation metrics	33
3.2.3 Filter power losses	34
3.2.4 Damping measures for harmonic resonance	34
3.3 Search algorithms	35
3.3.1 Crow search algorithm (CSA)	35
3.3.2 Crow spiral-based search algorithm (CSSA)	35
3.3.3 Harmony search algorithm (HSA)	38
3.3.4 Salp search algorithm (SSA)	38
3.4 Problem formulation	38
3.4.1 Objective function (OF)	39
3.4.2 Problem constraints	39
3.5 Filters studied	40
3.5.1 2 nd order filter	40
3.5.2 3 rd order filter	40
3.5.3 C-type filter	41
3.6 Search space	41
3.7 Results obtained and their discussions	42
3.7.1 System studied	42
3.7.2 Case #1	43
3.7.3 Case #2	50
3.8 Summary	56
Chapter 4 Optimal Multi-Objective Design of Anti-Resonance Fourth-Order Passi Power Filters in Distorted Distribution Systems	
4.1 Optimization algorithm	57
4.1.1 Non-Dominated Sorting Genetic Algorithm (NSGA ₃)	57
4.1.2 Technique For Order Of Preference By Similarity To Ideal Solution (TOPSIS	5)59

4.2 Scenario#161
4.2.1 Problem formulation for scenario#1
4.2.2 Results and discussion63
4.3 Scenario#2
4.3.1 Cost calculation
4.3.2 Problem formulation for scenario 2
4.3.3 Results and discussion
4.3.4 Problem formulation for scenario#3
4.3.5 Results and discussion for scenario#3
4.3.6 Summary89
Chapter 5 Conclusions and Future Work90
5.1 The following are the main remarks that have been concluded during the research work done in this thesis
5.2 Suggestions for Future Work
REFERENCES92
APPENDIX A: MATLAB CODE OF THE UNCOMPENSATED SYSTEM101
APPENDIX B: MATLAB CODE OF NSGA ₃ ALGORITHM104
APPENDIX C: MATLAB CODE OF TOPSIS105
أ

LIST OF TABLES

Table 2.1: PQ common issues, causes and their effects
Table 2.2: Effect of harmonics on power system components 18
Table 2.3: The most important standards for power quality and harmonics limitations and measurements [63]. 23
Table 2.4 : Harmonic voltage distortion limits [67], [68]. 24
Table 2.5: Harmonic current distortion limits [67], [68]. 24
Table 3.1. Numerical values of the controlling parameters used in CSSA, SSA, and HAS.42
Table 3.2 . The harmonic content of the supply's background voltage distortion and the non-linear currents as a percentage of their fundamental values
Table 3.3 . Impact of the designed filters on the performance of the system – Case #1.43
Table 3.4. Optimal parameters of the four filters attained by CSSA – Case #144
Table 3.5. Filter power loss values calculated for the four damped filters – Case #1. 44
Table 3.6. Optimal parameters of DHPF4 using HSA, SSA, and CSSA in terms of sizes of filters and fitness values in Case #1
Table 3.7 . Impact of the designed filters on the performance of the system – Case #2.50
Table 3.8 . Optimal parameters of the four filters attained by CSSA – Case #251
Table 3.9 . Filter power loss values calculated for the four damped filters – Case #2. 51
Table 3.10 . Optimal parameters of DHPF ₄ using HSA, SSA, and CSSA in terms of sizes of filters and fitness values in Case #2
Table 4.1. Maximum permissible harmonic currents as per IEEE Std. 51963
Table 4.2. Harmonic spectrum of the nonlinear loads and background voltage distortion 63
Table 4.3. Results obtained for the uncompensated and compensated system using the proposed methodology
Table 4.4. The harmonic content of the non-linear currents as a percentage of their fundamental values 72
Table 4.5. Uncompensated system results for Case#1 73
Table 4.6 : Results obtained for the compensated system using the proposed methodology for Case#1.
Table 4.7. Optimal parameters of filters for case#1. 75
Table 4.8 . Uncompansated results for Case#2 76

Table 4.9. Results obtained for the compensated system using the proposed method	dology for
Case#2	77
Table 4.10. Optimal parameters of filters for case#2.	78

LIST OF FIGURES

Figure 1.1 : An overview of harmonic filtering techniques
Figure 1.2 : Common damped high-pass filters:(a) 1 st order, (b) 2 nd order, (c) 3 rd order, (d) C-type, and (e) 4 th order (proposed) damped high-pass filters
Figure 2.1: PQ issues evaluation procedure [41].
Figure 2.2: Origin of power quality problems [37].
Figure 2.3: Changes in voltage distortion [52]
Figure 2.4: Distorted source current due to nonlinear load [37],[52]
Figure 2.5: Major harmonic sources
Figure 2.6: Non-sinusoidal signal expressed as the sum of sinusoidal signals [53]15
Figure 2.7: The typical load supply system concept of the customers [59]17
Figure 2.8: (a) Parallel resonant configuration, and (b) Equivalent circuit20
Figure 2.9 : Impedance magnitude with frequency for a parallel circuit
Figure 2.10: Circuit with potential for series resonance condition
Figure 2.11: Impedance magnitude vs. frequency for a parallel circuit
Figure 2.12: Effect of resistive load on the parallel resonance [38]
Figure 3.1 : Main features of DHPF ₄ at different frequencies: (a) equivalent circuit, (b) equivalent circuit at low frequencies, (c) equivalent circuit at tuning harmonic order, and (d) equivalent circuit at high frequencies
Figure 3.2: Simplified equivalent circuit model of DHPF ₄ with only non-linear loads considered used to derive the filter design equations
Figure 3.3: Simplified equivalent circuit model of DHPF ₄ at the tuning frequency used to derive the filter design equations
Figure 3.4: The system under study: (a) Single-line diagram, and (b) Equivalent circuit32
Figure 3.5 . Illustration of the changes of the weight coefficient and optimal guidance36
Figure 3.6. The spiral mechanism.
Figure 3.7. Illustration of the random perturbation given in black and the gaussian variation given in blue
Figure 3.8 . Equivalent-circuits: (a) 2 nd order, (b) 3 rd order, and (c) C-type passive filters40
Figure 3.9 : The convergence rate of the CSSA for the filters considered in Case #145
Figure 3.10 . Individual harmonic distortions after compensation for the filters considered in Case #1: (a) voltage, and (b) current

Figure 3.11 . Frequency response of the filters considered in Case #1: (a) resistance, (b) reactance, (c) impedance, and (d) driving point impedance
Figure 3.12 . Harmonic amplification of the filters considered in Case #1: (a) <i>HA</i> , and (b) <i>WHA</i>
Figure 3.13 . Individual harmonic distortions after compensation for the filters considered in Case #2: (a) voltage, and (b) current
Figure 3.14 . Frequency response of the filters considered in Case #2: (a) resistance, (b) reactance, (c) impedance, and (d) driving point impedance
Figure 3.15 . Harmonic amplification of the filters considered in Case #2: (a) <i>HA</i> , and (b) <i>WHA</i> .
Figure 4.1 : Flow chart for the NSGA ₃ -based TOPSIS algorithm
Figure 4.2 . Pareto fronts represent the non-dominated solutions: (a) DHPF ₄ and (b) C-type filter
Figure 4.3 . Harmonic amplification ratio under worst conditions for weak and stiff utility cases
Figure 4.4. Harmonic amplification ratio under actual operating conditions in weak and stiff utility cases
Figure 4.5. Equivalent impedance from the harmonic-source side in weak and stiff utility cases.
Figure 4.6. Harmonic spectra of the PCC current in the weak utility case
Figure 4.7. Harmonic spectra of the PCC voltage in the weak utility case69
Figure 4.8. Harmonic spectra of the PCC current in the stiff utility case69
Figure 4.9. Harmonic spectra of the PCC voltage in the stiff utility case70
Figure 4.10. Harmonic amplification ratio under worst conditions for weak (Case#1) and stiff utility (Case#2) with 12-pulse rectifier drive
Figure 4.11. Harmonic amplification ratio under actual operating conditions in weak and stiff utility cases with 12-pulse rectifier drive
Figure 4.12 . Harmonic spectra of the PCC current in weak and stiff utility cases with 12-pulse rectifier drive.
Figure 4.13. Harmonic spectra of the PCC voltage in weak and stiff utility cases with 12-pulse rectifier drive.
Figure 4.14. Equivalent impedance from the harmonic-source side in weak and stiff utility cases with a 12-pulse rectifier drive
Figure 4.15. Harmonic amplification ratio under worst conditions for weak and stiff utility cases with 18-pulse rectifier drive.

Figure 4.16. Harmonic amplification ratio under actual operating conditions in weak and st utility cases with 18-pulse rectifier drive.	
Figure 4.17 . Harmonic spectra of the PCC current in weak and stiff utility cases with 18-pulse rectifier drive.	87
Figure 4.18. Harmonic spectra of the PCC voltage in weak and stiff utility cases with 18-pulse rectifier drive.	.88