

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

INDUCE GENETIC VARIABILITY AND SELECTION FOR SALT TOLERANCE IN STEVIA PLANT (Stevia rebaudiana, Bertoni)

By

DOAA OMER SAYED MOHAMED

B.Sc. Agric. Sci. (Plant Breeding and Propagation Technology), Fac. Agric., Cairo Univ., 2009

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Agronomy)

Department of Agronomy
Faculty of Agriculture
Cairo University
EGYPT

2019

Format Reviewer

Vice Dean of Graduate Studies

APPROVAL SHEET

INDUCE GENETIC VARIABILITY AND SELECTION FOR SALT TOLERANCE IN STEVIA PLANT (Stevia rebaudiana, Bertoni)

M.Sc. Thesis In Agric. Sci. (Agronomy)

By

DOAA OMER SAYED MOHAMED

B.Sc. Agric. Sci. (Plant Breeding and Propagation Technology), Fac. Agric., Cairo Univ., 2009

APPROVAL COMMITTEE

Or. ROBA MEDHAT ISMAIL Senior Researcher of Plant Genetic Transformation, AGERI, ARC, Giza	••
Dr. AHMED MEDHAT MOHAMED AL-NAGGAR Professor of Agronomy, Fac. Agric., Cairo University	
Or. MOHAMED MOSTAFA MOHAMED AMEIN Professor of Agronomy, Fac. Agric., Cairo University	
Or. MOHAMED IBRAHIM MASRI Professor of Agronomy, Fac. Agric., Cairo University	. •

Date: 30 / 4 / 2019

SUPERVISION SHEET

INDUCE GENETIC VARIABILITY AND SELECTION FOR SALT TOLERANCE IN STEVIA PLANT (Stevia rebaudiana, Bertoni)

M.Sc. Thesis
In
Agricultural Sci. (Agronomy)

By

DOAA OMER SAYED MOHAMED

B.Sc. Agric. Sci. (Plant Breeding and Propagation Technology), Fac. Agric., Cairo Univ., 2009

SUPERVISION COMMITTEE

Dr. MOHAMED IBRAHIM MASRI

Professor of Agronomy, Fac. Agric., Cairo University

Dr. MOHAMED MOSTAFA MOHAMED AMEIN

Professor of Agronomy, Fac. Agric., Cairo University

Dr. HAMDY HAMED EL-HINNAWY (Late)

Professor of Agronomy, Fac. Agric., Cairo University

Dr. RANYA MOHAMED MOHAMED ABDEL AZIZ

Senior Researcher of Plant Tissue Culture, Sugar Crops Research Institute, ARC

Name of Candidate: Doaa Omer Sayed Mohamed Degree: M.Sc. Title of Thesis: Induce Genetic Variability and Selection for Salt Tolerance in

Stevia Plant (Stevia rebaudiana, Bertoni)

Supervisors: Dr. Mohammed Ibrahim Masri

Dr. Mohammed Mustafa Amein Dr. Hamdy Hamid El-Hinnawy (late)

Dr. Ranya Mohammed Abdel Aziz

Department: Agronomy **Branch:** Breeding Agronomy

Approval: 30/4/2019

ABSTRACT

Tissue culture technique became one of the most important tools in plant breeding and in vitro culture could be used to enhance selection process for salt stresses. Callus is important for rapid mass multiplication, generation of variability, cell suspension culture, preservation of cell line culture and production of secondary metabolites. Therefore, this study was carried out on Stevia plant for establishing efficient methods of formation and regeneration of callus as well as in vitro evaluation of salt stress effects on callus induction, regeneration and biochemical constituents. Three different explants (shoot tips, leaves and nodal segments) and MS medium with different combinations of plant growth regulators (PGRs) as well as five levels of salt stresses (0.0, 2000, 3000, 4000, 5000 ppm of NaCl) were studied. Results showed that all studied media induced callus for all explants, but MSc₄ (MS+1.0 mgl⁻¹ 2,4-D +0.75 mgl⁻¹ NAA) gave the highest values of callus fresh weight. Only, calli obtained from MSc₄ callus induction medium gave the best response to regenerate a sufficient number of shoots. Half strength MS medium with 1 mgl⁻¹IBA was found to be the optimum medium for root formation. Adding NaCl salt to the media significantly decreased fresh and dry weights of callus, but it significantly increased callus production of Stevioside, Rebaudioside A and total SGs (Steviol Glycosides). There was no regeneration with salt concentration of 4000 and 5000 ppm. Adding 2000 and 3000 ppm had no effect on the regeneration and multiplication process, but plantlet growth parameters in terms of number, shoots length, nodes number, leaves number, leaves fresh weight, leaves dry weight, roots number, roots length and survival rate% were decreased significantly with raising NaCl level up to 3000 ppm. Increase of salinity level up to 3000 ppm significantly decreased chlorophyll a, b and total chlorophyll contents, but significantly increased proline contents. Genetic variability in induced callus under salt concentrations was studied through Peroxidase isozyme and Poly phenyl oxidase banding patterns and the results indicated a difference between the various saline stress factors.

Key words: *Stevia rebaudiana*, Explants, Plant growth regulators, Callus formation, Plant regeneration. Salt stresses, Stevioside, Isozymes electrophoresis.

DEDICATION

I dedicate this work to whom my heartfelt thanks: to my father (Rhamo Alha), mother, brothers, sister and my husband for all the support and encouragement they continually offered along the period of my post-graduation. Also, I dedicate this work to my precious daughter.

ACKNOWLEDGEMENT

First and foremost thanks are due to ALLAH, the great merciful and the great beneficent.

I wish to express my sincere thanks, appreciation and deepest gratitude to **Dr. Mohamed Ibrahim Masri**, Professor of Agronomy, Faculty Agriculture, Cairo University, for his suggesting the problem, supervision during the progress of the work and valuable guidance of this work, his encouragement, supporting and guidance through the course of my study, thesis organization and for reviewing the manuscript. Also, I wish to express my sincerest appreciation to **Dr. Mohamed Mostafa Amein**, Professor of Agronomy, Faculty Agriculture, Cairo University, for sharing in supervision and for his revision of the manuscript of this thesis. Also, I wish to express my sincerest appreciation to **Dr. HAMDY HAMED EL-HINNAWY (Late)**, Professor of Agronomy, Faculty Agriculture, Cairo University, for sharing in supervision and his suggesting the problem.

I would like to express deep gratitude and appreciation to Dr. Ranya Mohamed Abdel Aziz, Senior Researcher of Plant Tissue Culture, (SCRI), (ARC), Giza, for suggesting the problem, supporting the plant material, sharing in supervision, useful guidance of this work and for reviewing the manuscript.

Special thanks and deep appreciation, gratitude are due to **Dr. Adel Abd Al-Aal,** Head Researcher of Agronomy, Sugar Crops Research Institute, Agriculture Research Center, for his encouragement and useful guidance of this work and for his great help in preparing and writing the manuscript.

Grateful appreciation is also extended to all staff members of the Agronomy Department, Faculty Agriculture, Cairo University.

Special deep appreciation and heartfelt gratitude is given to my mother, my late father, my husband and my precious daughter.

LIST OF ABBREVIATIONS AND INITIALS

μM Micro Moll

2, 4-D 2.4-dichlorophenoxy acetic acid

B₅ Gamborg, miller and ojima basal medium

BA, BAP Benzyl adenine or N⁶-Benzyl amino purine

DW Dry weight

FW Fresh weight

GA₃ Gibberellic acid

HPLC High performance liquid chromatography

IAA Indole acetic acid

IBA Indole butyric acid

KN, **Kin** Kinetin , N⁶-furfuryladenine

mM Milli Moll

MS Murashige and skoog's basal medium

NAA Naphthalene acetic acid

Native-PAGE Native-polyacrylamide gel electrophoresis

PGRs Plant growth regulators

PPO Poly phenyl oxidase

Px Peroxidase

R-A Rebaudioside A

SGs Steviol glycosides

ST Stevioside