

بسم الله الرهكن الرّحيم

$\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد

MicroRNAs Profiling in Egyptian Breast Cancer Patients

Thesis Submitted by

Mohamed Anwar Mohamed

(M.Sc. in Biochemistry, 2010)

For the Award of the Degree of Doctor of Philosophy in Biochemistry

Supervised by

Late Prof. Dr. Hala M. EL-Desouki

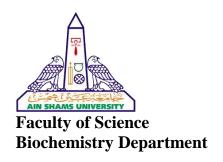
Prof. Dr. Ibrahim M. Abd Elsalam

Professor of Medical Biochemistry

Professor of Biochemistry Faculty of Science Ain Shams University

National Cancer Institute
Cairo University

Prof. Dr. Mahmoud M. Said


Prof. Dr. Hanan R. Nassar

Professor of Biochemistry Faculty of Science Ain Shams University Professor of Oncology Medicine National Cancer Institute Cairo University

Prof. Dr. Amany M. Hilal

Professor of Oncology Medicine National Cancer Institute Cairo University

2022

Biography

Name: Mohamed Anwar Mohamed

Date of graduation: May 1995, Faculty of Science

Biochemistry department

Ain Shams University

Degree awarded: B.Sc. in Biochemistry (1995)

(Good)

M.Sc in Biochemistry (2010)

Occupation: Laboratory Specialist

Ministry of Interior Hospitals

Acknowledgments

O' Allah, praise and thanks be to you as it should be for the majesty of your face, the greatness of your authority, the height of your place, and the fullness of the heavens and the earth and what is between them. It is only through Allah's guidance and favor; I was able to submit this work.

I express my deep and sincere gratitude to late **Prof. Dr. Hala M. El-Desouki**, Professor of Biochemistry in the Biochemistry Department at Ain Shams University, for allowing me to conduct this research under her patronage. I am especially grateful for believing in me and giving me the chance to do this work.

I become speechless when it comes to thanking my guru and my mentor, **Prof. Dr. Ibrahim M. Abd Elsalam,** Professor of Medical Biochemistry at the National Cancer Institute, Cairo University. A heartily thank you, goes out to him, for his fatherly attitude, his wisdom, and for his valuable guidance throughout this work, as well as suggesting the point. Every special advice he has given me helped develop me into the person I am today.

I sincerely appreciate and deeply thank **Prof. Dr. Mahmoud M. Said**, Professor of Biochemistry in the Biochemistry Department at Ain Shams University, for his kindness, patience, profound revision of the thesis and the manuscript,

tremendous efforts with the statistical analysis and for continuously encouraging me to move forward and achieve more.

Special thanks to **Prof. Dr. Hanan R. Nassar** Professor of Oncology Medicine at the National Cancer Institute, Cairo University, whom I have been considering a true teacher, and providing valuable comments.

Special thanks to **Prof. Dr. Amany M. Hilal,** Professor of Oncology Medicine at National Cancer Institute, Cairo University, for minding the samples.

Special thanks to **Dr. Zeinab F. Abdallah El-Kalinne**, Lecturer of Virology & Immunology Unit, Cancer Biology Department at the National Cancer Institute, Cairo University, for her help making the mutations part.

Special thanks to the staff members of the Department of Tumor Biology at the National Cancer Institute, for the generous facilities they offered me during the practical work of this study.

CONTENTS

Abstract	i
List of Abbreviations	iii
List of Tables	vii
List of Figures	ix
1- Introduction and Aim of the Work	1
2- Review of Literature	6
Structure and hormonal control of the breast	10
Breast structure	10
Hormonal control of the breast	11
Breast cancer hallmarks	12
Breast disease: benign and malignant	15
Benign breast disease	16
Breast cancer	17
Types of breast cancers	18
Histological subtypes	19
Ductal carcinoma in situ (DCIS)	19
Lobular carcinoma in situ (LCIS)	19
Invasive (or infiltrating) ductal carcinoma (IDC)	19
Invasive (or infiltrating) lobular carcinoma (ILC)	20
Less common types of breast cancer	20
Medullary carcinoma:	20
Mixed tumors	21
Paget disease of the nipple	21
Molecular subtypes	21
Luminal A (HR+/HER2-)	22
Luminal B (HR+ / HER2+)	23
HER2- enriched (HR- / HER 2+)	23
Triple negative (HR-/HER2-)	23
Etiology and Pathogenesis	24
Hereditary breast cancer	24
Sporadic breast cancer	25
Breast cancer stages	28
Management of breast cancer	34
Surgery	36
Medication	37
Hormonal therapy	37
Chemotherapy	37
Adjuvant chemotherapy	37
Neoadjuvant chemotherapy	38
Adjuvant and neoadjuvant drugs	38
Monoclonal antibodies	38
Radiation	39
Internal radiotherapy for breast cancer	39
Follow-up care	40
MicroRNAs	

MicroRNA biogenesis	41
Breast cancer-linked MiRs	43
MiRs and hallmarks of breast cancer	45
Cellular proliferation and key targets of breast cancer.	49
BRCA1 and BRCA2 genes	53
BRCA1 and BRCA2 structures and expressions	56
BRCA1 structure	56
BRCA1 protein	57
BRCA2 structure	62
BRCA2 protein	62
BRCA1 protein functions	64
BRCA2 protein functions	65
3- Subjects and Methods	67
Subjects	67
Blood samples separation and storage	71
Methods	71
Extraction and purification of miRs from plasma.	71
Reverse transcription of miRNA	76
Quantitative real time polymerase chain reaction (qRT-PCR)	79
Analysis of BRCA 1 and BRCA2 mutations	90
Extraction of DNA from peripheral blood	90
Extraction of DNA from paraffin section	93
Determination of DNA purity	95
Detection of BRCA1 and BRCA2 mutations using multiplex PCR	95
DNA gel electrophoresis	97
Detection of BRCA1 and BRCA2 mutations screening using High Resolution	100
Melting (HRM)	
Statistical analysis	103
4- Results	104
5- Discussion	129
Summary	137
References	139

MicroRNA Profiling in Egyptian Breast Cancer Patients

Mohamed Anwar Mohamed

ABSTRACT

Our study aimed at evaluating the clinical utility of specific microRNAs of plasma (miRs) diagnostic as biomarkers in early-stage breast cancer (BC) patients and to study their relation with BRCA1 and BRCA2 mutations in BC patients and high-risk females. The study included 45 early-stage BC patients (30 non-familial and 15 familial), 15 high-risk subjects and 20 clinically healthy females as control. Using quantitative RT-PCR, the relative expression levels of some plasma miRs (10b, 21, 155, 145 and let-7c) were determined in breast cancer patients and high-risk, compared to controls. Also, multiplex PCR was applied for the detection of 185delAG and 5382insC mutations in BRCA1 gene, and 6174delT mutation in BRCA2 gene using multiplex PCR and mutations were confirmed using High Resolution Melting (HRM) technique. Plasma miR-10b and miR-21 levels were significantly up-regulated, while miR-155 and miR-let-7c levels were significantly down-regulated in BC patients and high-risk subjects, compared to controls. MiR-21 was significantly upregulated, whereas miR-155 level was significantly downregulated in patients with lymphatic invasion. MiR-21 showed a significant association with mutation in exon 2 of BRCA 1 in high-risk individuals. Deregulated expression

of miR-10b, miR-21, miR-155, and let-7c serves as a potential non-invasive diagnostic marker in early-stage II BC, and surveillance biomarkers for individuals at a higher-expected risk of developing BC. Also, high-risk individuals harbor classical mutations in BRCA1 gene, considering it a high priority for these individuals to have had a strict follow-up.

Keywords: MiRs, mutations, BRCA1, BRCA2, early-stage II breast cancer

Abb.	Full term
ADII	Atrini cal diretal hamamilacia
ADH	Atypical ductal hyperplasia
AFAP1-AS1	Actin fiber-associated protein 1-antisense
A ~~	RNA1
Ago	Argonaute
Akt	Protein kinase B
ALH :D	Atypical lobular hyperplasia
AntagomiRs	Antagonistic miRNAs
ARS	Age-standardized rate
ATM gene ATM	Ataxia Telangiectasia Mutant gene Ataxia telangiectasia mutated
BAP1	BRCA1-Associated —Protein 1
BARD1	BRCA1-Associated RING Domain1
BASC	BRCA1-Associated genome Surveillance
	complex
BC	Breast cancer
Bcl2	Anti-apoptotic protein
BCSC	Breast cancer stem cell
BER	Base Excision Repair
BIC	Breast cancer Information Core
BMPs	Bone morphogenetic proteins
BRCA1,2	Breast cancer gene1,2
BRCT	BRCA1Carboxy- Terminal
BRIP	BRCA1Interacting Protein -1
CA	Capside protein
CCL-18	Chemokine (C-C motif) ligand 18
CCND2	Cyclin D2
CDK	Cyclin-dependent kinase
CHEK2	Checkpoint kinase 2
C-myc	C-Myelocytomatosis oncogene product
DBD	DNA-Binding Domain
DCIS	Ductal Carcinoma In Situ
DGGE	Denaturing Gradient Gel Electrophoresis
DNA	Deoxyribonucleic acid
EGF	Epidermal growth factor
=	1

Abb.	Full term
EGFR	Enidermal growth feator recentor
	Epidermal growth factor receptor
EMT	Epithelial-mesenchymal transition
ER	Estrogen receptor
ERK	Extracellular- signal regulated kinase
FADD	Fas-associated death domain
FOXO3	Forkhead box O3
G	Grade
GC	Genetic counseling
Grb2	Growth factor receptor-bound protein 2
GSK3	Glycogen synthase kinase 3
HER	Human epidermal growth factor receptor
HIF1a	Hypoxi-ainducible factor 1a
HIF2a	Hypoxia-inducible factor 2a
HMGA2	High mobility group athook 2
HOXD	Homeobox D
H-ras	Harvey rat sarcoma
HRM	High Resolution Melting
HRR	Homologous recombination repair
IDC	Infiltrating Ductal Carcinoma
IHC	Immunohistochemistry
ILC:	Infiltrating Lobular Carcinoma
IQGAP1	IQ-motif containing GTPase activating
TO D	protein 1
IQR	Inter quartile range
IRB	Institution Review Board
JAK/STAT	Janus kinase/signal transducer and activator
	of transcription
Ki 67	Kiel clone-67
KLF4	Krüppel-like factor 4
K-ras	Kirsten rat sarcoma
LA	Luminal A
LABC	Locally advanced breast cancer
LB	Luminal B
Let7-c	Lethal-7c

Abb.	Full term
	T 1 1
LN	Lymph nodes
LNA	Locked nucleic acid
LncRNAs	Long noncoding RNAs
LOH	loss of heterozygosity
LR	Likelihood ratio
MAPK	Mitogen activated protein kinase
MEK	Mitogen/extracellular signal-regulated kinase
miRs	MicroRNAs
MMP	Matrix metalloprotease
MRI	Magnetic Resonance Imaging
mRNA	Messenger Ribonucleic Acid
MT1-MMP	α3-integrin, and membrane type-1 matrix
	metalloproteinase
MTH1	MutT homolog-1
mTOR	Mammalian target of rapamycin MUCIN 1
NACT	Transmembrane glycoprotein mucin1 Neoadjuvant chemotherapy
NCAD	Neural cadherin
ncRNA	
NF1	Non-coding RNAs
NS	Neurofibromatosis type 1
4- Oct	Non significant
OncomiRs	Octamer-binding transcription factor 4
	Oncogenic miRNAs
p53	Tumor protein P21-activated kinase 4
PAK4	
PALB2	Partner and localizer of BRCA2
PBX3	Pre-B-cell leukemia homeobox 3
PCR	Polymerase Chain Reaction
PR	Progesterone receptor
PTEN	Phosphatase and tensin homolog
q PCR	Quantitative Polymerase Chain Reaction
Raf	Rapidly accel-erated fibrosarcoma
RAS	Rat sarcoma
Rho and Rac	Ras-like proteins

Abb.	Full term
RHOA	RAS homolog family member A
RISC	RNA-induced silencing complex
ROC	Receiver operating characteristic
ROCK1	Rho-associated coiled-coil kinase 1
RTKN	Rhotekin
SMAD	small mothers against decapentaplegic
SOX1	SRY-box transcription factor 1
SOX1	Sex-determining region Y-box2
SPSS	Statistical Package for Social Sciences
STK11	Serine/threonine kinase 11
SU	Surface protein
Tag	Thermus aquaticus
TAMs	Tumorassociated macrophages
TGF-b	Transforming growth factor beta
TIMP3	Tissue inhibitor of metalloproteinases-3
TM1	Tropomyosin-1
TMEM49	Transmembrane protein 49
TN	Triple negative
TNBC	Triple negative breast cancer
TP53	Tumor Protein 53
TRBP	TAR-RNA binding protein
TsmiRs	Tumor suppressor miRNAs
uPAR	urokinase plasminogen activator receptor
USA	United Stated of America
UTR	Untranslated region
VEGF	Vascular endothelial growth factor
WHO	World health organization
χ^2	Chi-square
ZEB1	Zinc-finger e-box binding homeobox 1

ListofTables

Table No	. Title	Page No.
Table (2.1):	The classification of four molecular subty	pes of breast cancer
Table (2.2):	Primary tumor anatomic staging: clinical	
Table (2.3):	Clinical anatomic regional lymphnode sta	aging30
Table (2.4):	Distant metastases: anatomic staging (clin	nical
	and pathologic)	31
Table (2.5):	Anatomic staging summary	32
Table (2.6):	Breast cancer stages	33
Table (2.7):	Oncogenic miRs (oncomiRs) reported to l breast cancer cells	be up- regulated in47
Table (2.8):	Tumor suppressor miRs (tsmiRs) reported regulated in breast cancer cells	l to be down48
Table (3.1):	Nucleotide sequences of the primer sets u detection of BRCA1	sed forthe and BRCA2
	mutations by multiplex PCR method	97
Table (3.2):	Nucleotide sequences of the primer sets u detection of BRCA 1 and BRCA2	sing for the
	mutations by HRM method	101
Table (4.1):	Clinicopathological data of BC paties study	ents included in the104
Table (4.2):	Primer's sequence of candidate miR	s105
Table (4.3):	Statistical significance of the relative (RQ) of candidate plasma miRs individuals, all BC patients, non-familiary patients, compared to healthy subjects' control	in high-risk lial and familial
	healthy subjects' control	100

ListofTables

Table No.	Title	Page No.
Table (4.4):	Statistical significance of (RQ) of candidate plasma patients (non-familial and familial breast cancer patientsk individuals	a miRs in breast cancer familial), non-familial and
Table (4.5):	Diagnostic values (sensitivi predictive value, negative accuracy %) of significant b	ty, specificity, positive predictive value and diagnostic iomarkers110
Table (4.6): (Correlations among candidate	miRs in different groups 112
Table (4.7):	Relation between candid (n=45).	late miRs in BC patients
Table (4.8): F	Frequency of BRCA1 and BRO individuals, familial and no BC patients	
Table (4.9):	Relation between BI candidate miRs with clinico	RCA mutations and
Table (4.10):	Relation between B miRs in BC patients 12	RCA mutations and candidate
		RCA mutations and candidate