

بسم الله الرهكن الرّحيم

$\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد

The value of fructosamine in prediction of angiographic outcomes in diabetic patients presented with anterior ST segment elevation acute coronary syndrome undergoing their first primary PCI

Thesis

Submitted for Partial Fulfillment of Master's Degree in Cardiology

By

Mohammed Borham Borham Abo Elnour *M.B.B., Ch.*

Under supervision of

Prof. Dr. Mohammed Esmail Ahmed

Professor of Cardiology Faculty of Medicine - Ain Shams University

Prof. Dr. Rami Raymond Elias

Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr. Ahmed Ibrahim El Desoky

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2022

The value of fructosamine in prediction of angiographic outcomes and MACE in diabetic patients presented with anterior ST segment elevation acute coronary syndrome undergoing their first primary PCI

Thesis

Submitted for Partial Fulfillment of Master's Degree in Cardiology

By

Mohammed Borham Borham Abo Elnour *M.B.B., Ch.*

Under supervision of

Prof. Dr. Mohammed Esmail Ahmed

Professor of Cardiology Faculty of Medicine - Ain Shams University

Prof. Dr. Rami Raymond Elias

Professor of Cardiology Faculty of Medicine - Ain Shams University

Dr. Ahmed Ibrahim El Desoky

Lecturer of Cardiology
Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2022

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohammed Esmail Ahmed,**Professor of Cardiology, Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Rami Raymond Elias,** Professor of Cardiology, Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ahmed Ibrahim El Desoky,** Lecturer of Cardiology, Faculty of Medicine - Ain
Shams University, for his great help, active participation and guidance.

Mohammed Borham

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	v
Introduction	
Aim of the Work	4
Review of Literature	
Diabetes Mellitus	5
ST Segment Elevation Myocardial Infarctio	on (STEMI)26
Major Adverse Cardiac Events (MACE)	36
Patients and Methods	53
Results	62
Discussion	79
Limitations	85
Conclusion & Recommendations	86
Summary	87
References	
Arabic Summary	

List of Abbreviations

Abb.	Full term
ACS	. Acute coronary syndrome
AMI	. Acute Myocardial Infarction
ANS	. Autonomic nervous system
CABG	. Coronary artery bypasses grafting
CK-MB	. Creatine kinase-myocardial isoenzyme
CMRI	. Cardiac magnetic resonance imaging
CRP	. C-Reactive Protein
CT	. Cardiac Troponins
CVD	. Cardiovascular disease
DES	. Drug eluting stent
ECG	. Electrocardiography
ECM	. Extracellular matrix
ENOS	. Endothelial nitric oxide synthase
FMC	. First medical contact
IL-6	. Interleukin-6
IV	. Intravenous
LV	. Left ventricular
MACE	. Major adverse cardiac events
MBG	. Myocardial blush grade
MCE	. Myocardial contrast echocardiography

List of Abbreviations Cont...

Abb.	Full term
MI	. Myocardial infarction
MRA	. Mineralocorticoid receptor antagonist
MRI	. Magnetic resonance imaging
NO	. Nitric oxide
NOS	. Nitric oxide synthase
NYHA	. New York heart association
PCI	. Percutaneous coronary intervention
PMI	. Periprocedural myocardial injury
RCTs	. Randomized controlled trials
ROS	. Reactive oxygen species
RV	. Right ventricular
SaO2	. Oxygen saturation
SPSS	. Statistical Package for Social Science
STEMI	. ST-elevation myocardial infarction
STR	. ST-segment resolution
TIMI	. Thrombolysis in myocardial infarction
ULN	. Upper limit of normal
URL	. Upper reference limit

List of Tables

Table No.	Title	Page No.
Table (1): Table (2):	Baseline demographic and risk factor Patient according to their NYI KILLIP classes scores	HA &
Table (3):	Perspective data of the study (n=100): Regarding TIMI flow and (After PCI as an end result)	MBG
Table (4):	Echocardiographic data of the study	group65
Table (5):	Incidence of MACE and calculating oballoon time in our study group	
Table (6):	Serum fructosamine levels amon study group	
Table (7):	Correlation between MACE and data	
Table (8):	Correlation between MACE Fructosamine and door to balloon tin	
Table (9):	Correlation between MACE and class	-
Table (10):	Correlation between Fructosamin Gender, Hypertension, NYHA class.	
Table (11):	Correlation between Fructosamin smoking	
Table (12):	Correlation between Fructosamine systolic function	
Table (13):	Correlation between Fructosamine diastolic dysfunction grade	
Table (14):	Correlation between Fructosamin-	
Table (15):	Correlation between fructosamine MBG	

List of Tables Cont...

Table No.	Title	Page No.
Table (16):	Correlation between fructosamine	
Table (17):	Correlation between doors to balloo with angiographic outcome data	
Table (18):	Relation between Fructosamine and flow	
Table (19):	Relation between Fructosamine and	MBG77
Table (20):	Relation between Fructosamine occurrence of MACE.	

List of Figures

Fig. No.	Title Page N	0.
Figure (1):	Pathophysiology of atherosclerosis in Diabetes	14
Figure (2):	Endothelial dysfunction in Diabetic induced coronary vascular diseases	16
Figure (3):	Prediction of the site of total occlusion in the left anterior descending coronary artery using admission electrocardiogram in anterior wall acute myocardial infarction	29
Figure (4):	Reperfusion strategies in acute ST-segment elevation myocardial infarction: a comprehensive review of contemporary management options	31
Figure (5):	Echocardiography obtained from the four- chamber views at diastole (A,B,C) and systole (D,E,F). (A,D) Acute anterior myocardial infarction	32
Figure (6):	Two-dimensional transthoracic echocardiograms in a patient with mitral regurgitation caused by apical displacement of the mitral valve	
Figure (7):	The coronary no-reflow phenomenon	38
Figure (8):	Demographic data and Risk factors	63
Figure (9):	Correlation between MACE and Smoking	68
Figure (10):	Correlation between MACE and fructosamine serum level.	69
Figure (11):	Correlation between MACE and door to balloon time.	70
Figure (12):	Relation between Fructosamine and TIMI flow.	76

List of Figures Cont...

Fig. No.	Title		ŀ	Page No.	
Figure (13):	Relation b	etween Fru	ctosamine and N	⁄IBG77	
Figure (14):			Fructosamine		

ABSTRACT

Background: Cardiovascular diseases are the leading most common cause of death in industrialized countries. The chronic hyperglycemia of diabetes is associated with long-term damage, dysfunction and failure of different organs especially heart and blood vessels.

Objective: To study the predictive value of Fructosamine as a marker of short-term glycemic control over 2-3 weeks on the angiographic and clinical outcomes in diabetic patients presented with anterior STEMI in Ain shams university hospital.

Patients and Methods: This is an observational study recruiting 100 patients presented with anterior STEMI who underwent their first primary percutaneous coronary intervention (PPCI) from May 2020 to December 2020.

Results: Angiographic results of patients post PCI were as follows:

Regarding Thrombolysis in myocardial infarction (TIMI Flow), 8 patients had TIMI flow 0, 18 had TIMI I, 27 had TIMI II and 37 had TIMI III flow. Regarding myocardial blush grade (MBG) 12 patients had MBG grade 0, 27 had grade I, 20 had grade II and 4 had grade III.

During follow up for one-month, Major adverse cardiac events (MACE) occurred in 56% of patients. Measured serum Fructosamine levels were ranging between (233 to 557 µmoll/L) the results showed a strong correlation between serum Fructosamine and TIMI flow MBG. Patients with higher Fructosamine level had worsen TIMI flow and MBG and more occurrence of MACE in diabetic patients after PPCI.

Conclusion: High Fructosamine level can be used as a predictor for worse outcomes in diabetic patients presented with Anterior STEMI.

Keywords: Diabetes, Fructosamine, STEMI, PPCI, TIMI Flow, MBG, MACE.

Introduction

iabetes Mellitus is defined as the most common endocrine disorder where the body does not either produce enough insulin or has a resistance to the circulating insulin, and is characterized by high blood sugar levels over prolonged periods (Arnold et al., 2018).

The chronic hyperglycemia of diabetes is associated with long-term damage, dysfunction and failure of different organs, especially the eyes, kidneys, nerves, heart and blood vessels.

Long-term complications of diabetes include retinopathy with potential loss of vision, nephropathy leading to renal failure, peripheral neuropathy with risk of foot ulcers, amputations, Charcot joints and autonomic neuropathy causing gastrointestinal, genitourinary, and cardiovascular diseases (American Diabetes Association, 2009).

Microvascular complications for which a large body of data has been accumulated, leading to the endorsement of HbA1c for diagnosis in many countries worldwide, with some variations in cut-offs and testing strategies (Florkowski, 2013).

According to recent statistics, this condition afflicts as many as 382 million persons around the globe, with an estimated prevalence of approximately 8.3% in Worldwide, as many as 592 million individuals may be affected

by diabetes in 2035, a remarkable 55% increase in prevalence over the next 2 decades (Guariguata et al., 2014).

The current diagnostic and prognostic strategies in diabetes are mainly based on two tests, plasma (or capillary) glucose and glycated hemoglobin (HbA1c).

In practice, fructosamine testing refers to a laboratory test for diabetes management that it is rarely used in clinical practice (simple blood glucose monitoring or HbA1c testing are usually preferred). However, the main advantage of the test is that it can detect overall changes in blood glucose control within a few weeks, rather than months (like HbA1c). Fructosamine can be also useful when the HbA1c measurement may be unreliable e.g. in case of hemoglobinopathies such as Thalassemia (Burtis et al., 2012).

Cardiovascular diseases (CVD) are a major public health problem worldwide. It has been estimated that 17.5 million people die of it each year. Coronary artery disease (CAD) is the leading component of cardiovascular diseases and the most common cause of death in industrialized countries. Annually 1.8 million people in Europe die from CAD (Nichols et al., 2014).

Major adverse cardiac events (MACE) is defined as the composite of total death; MI; stroke, hospitalization because of HF; and revascularization, including percutaneous coronary