

Evaluation of Long Non Coding RNA (CCAT1) as a Prognostic Biomarker in Acute Myeloid Leukemia

A Thesis

"Submitted for degree of science as a partial fulfillment for requirements of Master of science"

Submitted by

Rehab Raafat Abd-ELmaksoud

B.Sc. in Biochemistry, 2012 (Faculty of Science - Ain Shams University)

Under Supervision of

Prof. Dr. Magdy Mahmoud Mohamed
Professor of Biochemistry
Faculty of Science
Ain Shams University

Dr. Eman M. Saleh Assistant professor of Biochemistry Faculty of Science Ain Shams University

Dr. Nashwa Nagy EL-Khazragy Consultant of Clinical Pathology Faculty of Medicine Ain Shams University

> Biochemistry department Faculty of Science Ain Shams University 2020

Approval sheet

Name of candidate/ Rehab Raafat Abd-ELmaksoud

Title of the thesis: Evaluation of Long Non Coding RNA (CCAT1) as a Prognostic Biomarker in Acute Myeloid Leukemia.

This thesis has been approved for submission by:

Supervisors:

Prof.Dr.Magdy Mahmoud Mohamed

Professor of Biochemistry, Faculty of Science, Ain Shams University

Dr. Eman M. Saleh

Assistant professor of Biochemistry, Faculty of Science, Ain Shams University

Dr. Nashwa Nagy EL-Khazragy

Consultant of Clinical Pathology, Faculty of Medicine, Ain Shams University

Examiners committee:

Prof. Dr. Mona Ahmed Sadek

Professor of Biochemistry, Nutrition department, Faculty of Women for Arts, Science and education, Ain Shams University

Prof. Dr. Samar Samir Youssef

Professor of Biomedical Technology, National Research Center.

Prof. Dr. Magdy Mahmoud Mohamed

Professor of Biochemistry, Faculty of Science, Ain Shams University

Head of Biochemistry Department

Prof. Dr. Kholoud Salah El-Din

ACKNOWLEDGMENT

First and for most thanks to **ALLAH** who gives me the power to go forward in a way illuminated with his merciful guidance

No words can express my profound thanks for deep gratitude to **Prof. Dr. Magdy Mahmoud Mohamed** for constructive guidance and his continuous efforts and facilities he offered throughout his supervision. I am also thankful to him for his continuous support faithful advice and continuous encouragement during the execution of the work. It is an honor to me that he is my supervisor and I will never forget his valuable supervision.

I am sincerely grateful to **Dr. Eman M. Saleh** for providing invaluable guidance throughout this research. I would also like to thank her for her friendship and empathy.

I would like to express my thanks and gratitude to **Dr.**Nashwa EL-Khazragy for her sincere constructive help and valuable contribution throughout the experimental work and for suggesting several important improvements in the manuscript of the thesis and for sustained encouragement continuous support grate assistance and kind supervision.

My thanks are due to my sincere colleagues for their respectable dealing and sincere cooperation.

DEDICATION

TO MY FAMILY

SPECIAL DEDICATION FOR ALL MY
FAMILY ESPECIALLY

MY FATHER AND MY MOTHER

ALSO MY HUSBAND

FOR THEIR CONTINUED SUPPORT AND ENCOURAGEMENT THROUGHOUT MY

WORK

LIST OF ABBREVIATIONS

Ago2 Argonaute protein 2

ALL Acute lymphoblastic leukemia
AML Acute myeloid leukemia
APL Acute pomyelocytic leukemia

Ara-C Cytosine arabinoside

AS Antisense

AT1R Angiotensin II type 1 receptor

ATRA All-trans-retinoic acid AUC Area under the curve

BANCR BRAF-activated non-protein coding RNA BLACAT1 Bladder cancer-associated transcript 1

CBC Complete blood picture CCA Cholangiocarcinoma

CCAT1 Colon cancer-associated transcript-1 CCATs Colon cancer associated transcripts

cDNA Complementary DNA

CEBPA CCAAT enhancer-binding protein-α ChIRP-Seq Chromatin Isolation by RNA purification

CI Confidence interval

CLIP Crosslinking immunoprecipitation
CLL Chronic lymphocytic leukemia
CML Chronic myeloid leukemia

CN-AML Cytogenetically normal acute myeloid leukemia

CNV Copy number variation CRC Colorectal cancers

CRISPRs Clustered regularly interspaced short palindromic repeats

dsRBD double-stranded RNA binding

EC Esophageal cancer

EGOT Eosinophil granule ontogeny transcript

EMPs Early myeloid progenitors FAB: French-American-British

FRET Fluorescence resonance energy transfer G2DHE GATA2 distal hematopoietic enhancer

GBC Gallbladder cancer:
GC Gastric cancer

GCF First-degree relatives of patients with gastric cancer

HCC Hepatocellular carcinoma

HGNC The HUGO Gene Nomenclature Committee

HK Housekeeper gene

HMGA2 High mobility group AT-hook 2

HS highly significant

HSCs Hematopoietic stem cells

IQR Interquartile range

IT Intronic

ITDs Internal tandem duplications *LINC* Long intergenic non-coding

LNA Locked nucleic acids
LncRNAs Long non-coding RNAs
LPS Lipo poly saccharide
LSC leukemic stem cell

M0 Minimally differentiated Acute Myeloblastic leukemia

M1 Myeloblastic leukemia
M2 Myelocytic leukemia
M3 Promyelocytic leukemia
M4 Myelomonocytic leukemia
M5: Acute monocytic leukemia
M6 Acute erythroid leukemia

M7 Acute megakaryoblastic leukemia

MBC metastatic breast cancer MGB Minor groove –binding

miRNAs Micro RNAs

MRD Minimal/measurable residual disease in AML

MTX Methotrexate

NEAT1 Nuclear paraspeckle assembly transcript 1

NF-κB Nuclear factor-κB NPM1 Nucleophosmin 1

NSCLC Non-small cell lung carcinoma

NUD Nonulcer dyspepsia OS Overall survival

p-ALL pediatric Acute Lymphocytic Leukemia

PAZ Piwi/Argonaute/Zwilli domain PBS Phosphate-buffered saline PDCD4 programmed cell death 4

PLTs: Platelets

poly IC polyriboinosinic-polyribocytidylic acid

premiRNA Precursor miRNA
pri-miRNA primary miRNA
PSPs paraspeckle proteins

PTEN phosphatase and tensin homolog RFS Shorter relapse-free survival RISC RNA-induced silencing complex

RNaseP Ribonuclease P

ROC Curve Receiver operator characteristic curve

RTqPCR Real-time quantitative PCR

SCT Rtem cell transplant SnoRNA Small nucleolar RNA

SnoRNP Small nucleolar RNA protein SNP Single-nucleotide polymorphism

SPEM Spasmolytic polypeptide- expressing metaplasia STAT5 Signal transducer and activator of transcription 5

SZ Schizophrenia T2D Type 2 diabetes TC Tongue cancer

TKDs Tyrosine kinase domains TNF-α Tumor Necrosis Factor-α

TPM1 Tropomyosin1

WHO World Health Organization

CONTENTS

	Page
List of Abbreviations	I
Content	IV
Abstract	VII
List of Tables	VIII
List of Figures	IX
Introduction	1
Aim of the work	5
1- Review of Literature	
I.Leukemia	6
I.1. Types of leukemia	7
I.2. Acute myeloid leukemia (AML)	9
I.2.1. CLASSIFICATION OF AML	10
I.2.2. Prognostic factor for acute myeloid leukemia	13
I.2.3. Diagnosis of AML	15
I.2.3.1. TOOLS FOR DIAGNOSIS OF AML	16
I.2.4. Treatment of AML	17
II. Noncoding RNA	21
II.1. Long non coding RNA	21
II.1.1. Origins of lncRNAs	22
II.1.2. Nomenclature principle for lncRNA	23
II.1.3. Biogenesis of lncRNA	25
II.1.4. Role of LncRNA in cancer	28
II.1.5. LncRNA in acute myeloid leukemia	29
II.1.6. Role of lncRNA in pathogenesis:	31
II.1.6.1. In psychiatric diseases	31
II.1.6.2. Role of LncRNAs in regulation of physiological	31
processes	
II.1.7. Role of LncRNAs as prognostic biomarker	32
II.2. Colon cancer-associated transcript-1 (CCAT1)	34
III. MicroRNAs:	35
III.1. Nomenclature of miRNAs	36
III.2. Biogenesis of miRNA	37
III.2.1. Intergenic microRNAs:	39
III.2.2. Coding-Intronic microRNAs	40
III.3. Mode of action of MiRNAs	42
III.4. Role of miRNAs in Cancer	43
III.5. Role of miRNAs in leukemia	47
III.6. miRNAs in cancer pathogenesis and diagnosis	49
III.7. MiRNAs as prognostic biomarkers:	51

III.8. Circulating miRNAs as diagnostic and prognostic	Page 52
biomarkers	
III.9. Correlation between miRNAs with morphology in CN-AML	52
III.10. Correlations of microRNA expression with clinical outcome in AML	53
III.11. MicroRNAs in cancer therapeutics	54
III.11.1. Antisense inhibition of mature microRNA	54
(inhibiting oncomirs)	
III.11.2. Replacement of microRNAs	55
IV.miRNA-155	55
IV.1. miRNA-155 and leukemia	56
IV.2. Expression of miRNA-155	58
IV.3. Function of miR-155:	59
IV.3.1. Hematobioses	59
IV.3.2. Inflammation	60
IV.3.3. Immunity	61
IV.4. Detection Methods for miRNA	61
IV.4.1. Microarray-Based Methods	61
IV.4.2. qRT- PCR-Based Methods	63
IV.4.2.1. SYBR® Green	64
.IV.4.2.2.Fluorescently labeled sequence-specific probes	64
2-Subjects and Methods	
I-subjects	68
I.1. Inclusion Criteria	68
I.2. Exclusion Criteria	69
II.Materials	70
II. 1Biological	70
II.2.Chemicals and Equipment	70
III. METHODS	71
III.1. Sample collection& polymorphonuclear Leucocytes	71
(PMNLs) Seperation	
III.2. Purification of total RNA, including miRNA from	72
isolated	
III.3. Reverse transcription	75
III.4. gene expression analysis by Real time PCR	77
III.4.1 miRNA-155 gene expression analysis by Real time	77
PCR	
III.4.2.CCAT1 gene expression analysis by real time PCR	77
III.5. Statistical Data Management and Analysis	80
III.5.1.Descriptive statistics	81

Contents

	Page
III.5.2Analytical statistics	81
3- Results	83
4-Discussion	99
5. Summary	111
6. Conclusion and Recommendations	114
7. References	115
8. Arabic Summary	
9. Arabic Abstract	

ABSTRACT

Colon cancer-associated transcript-1 (CCAT1) is along noncoding RNA that maps to chromosome 8q24.21,it was first discovered to be upregulated in colorectal cancer. Recent studies have observed the CCAT1 overexpression in primary human solid cancers as in AML. Moreover, it repressed monocytic differentiation and promote cell growth of HL-60. The present study aims to investigate the correlation of CCAT1 expression with clinicpathological features and the clinical prognosis of the patients with AML. To find out the association between CCAT1 expression and expression of miRNA-155 as a targeting gene for CCAT and to improve our understanding of the roles and the clinic implications of CCAT1 in the development and progression of AML. This study obtained by measuring the expression of CCAT1 and miR-155a of 50 AML patients. The results of the present work showed that CCAT1 and miR-155a were increased by 3.0 and 5.6 folds respectively in AML compared to normal controls and also upregulation of both biomarkers was significantly associated with high risk AML. It could be concluded that CCAT1 and miR-155a can be considered as a diagnostic and prognostic biomarker in AML.

Key words

Leukemia, Acute myeloid leukemia, Long Non Coding RNA and MicroRNA-155a

LIST OF TABLES

Table	Title	Page
1	Types of leukemia's	8
2	The French-American-British (FAB) classification of AML	10
3	World Health Organization (WHO) classification of AML	11
4	Better risk prognostic factors VS worse risk prognostic	14
	factors	
5	Tests for AML diagnosis	15
6	Tools for diagnosis of AML	17
7	Role of LncRNAs in different types of cancer	28
8	Many LncRNAs in acute myeloid leukemia	30
9	Role of lncRNAs in regulation of physiological processes	32
10	Expression of miRNA in different types of cancer	47
11	MiRNAs as diagnostic and prognostic biomarkers in	48
	leukemia	
12	Chemicals for molecular studies	70
13	Equipment for molecular studies	71
14	Descriptive analysis of the studied subjects	85
15	Comparative analysis for Lnc-CCAT1 and miR-155a	86
	between AML patients and Healthy control group	
16	Expression levels of Lnc-CCAT1 between standard and high	88
	risk AML groups	
17	Expression levels of miR-155a between standard and high	91
	risk AML groups	
18	Diagnostic and prognostic efficiency of Lnc-CCAT1 in	94
	discriminating between AML and healthy control; between	
	standard and high risk-AML subgroups	
19	Diagnostic and prognostic efficiency of miR-155a in	95
	discriminating between AML and healthy control; between	
	standard and high risk-AML subgroups	

LIST OF FIGURES

Figure	Title	Page
1	reveals the developments of different types of AML through the	7
	stem cells	
2	Possible Origins of LncRNAs	23
3	A schematic summary of the nomenclature scheme for human long	25
	LncRNA genes of no known function	
4	IncRNA biogenesis	27
5	The relation between lncRNAs expression with genetic	29
	abnormalities and cancer phenotype identification	
6	Biogenesis of miRNA	38
7	MiRNAs function as oncogene and tumor suppressor	46
8	Possible mechanism of miR-155– mediated leukemogenesis	58
9	Maturation and interaction of miR-155 with mRNA target	59
10	Purification of total RNA, including miRNA from serum	72
11	Selective conversion of mature miRNAs into cDNA	75
12	StepOne (Applied BioSystems) PCR detection system	78
13	Amplification plots of the threshold of expression of target genes	80
	by RT-qPCR	
14	Boxplot graph illustrating the expression level of Lnc_CCAT1 in	86
	AML versus the control group	
15	Boxplot graph illustrating the expression level of miR_155a in	87
	AML versus the control group	
16	Boxplot graph illustrating the expression level of Lnc_CCAT1in	89
	cytogenetic negative-AML versus the cytogenetic positive group	
17	Boxplot graph illustrating the expression level of Lnc_CCAT1in	89
	AML patients with high TLC (>50,000/ μ l) versus < 50,000/ μ l	
	group	
18	Boxplot graph illustrating the expression level of Lnc_CCAT1in	89
10	AML patients with blasts percentage (>70) versus (< 70) group	
19	Boxplot graph illustrating the expression level of Lnc-CCAT1in AML patients with residual (>0.01) versus < 0.01 group	90
20	Boxplot graph illustrating the expression level of Lnc-CCAT1in relapsed- AML	90
	patients versus remitted group	70
21	Boxplot graph illustrating the expression level of miR_155 in	92
	cytogenetic negative-AML versus the cytogenetic positive group	
22	Boxplot graph illustrating the expression level of miR-155 in AML	92
	patients with high blasts percentage (>70) versus (< 70) group	
23	Boxplot graph illustrating the expression level of miR-155 in AML 9	93
	patients with MRD (≤ 0.01)versus(>0.01)	
24	Boxplot graph illustrating the expression level of miR-155in	93
	relapsed- AML patients versus remitted group	

Figure	Title	Page
25	ROC curve analysis presents the diagnostic potential of	96
	Lnc_CCAT1 and miR-155a genes expression in discriminating	
	AML from healthy control	
26	ROC curve analysis presents the prognostic potential of	96
	Lnc_CCAT1 and miR-155a genes expression in discriminating	
	MRD <0.01 from MRD>0.01 patients	
27	ROC curve analysis presents the prognostic potential of	97
	Lnc_CCAT1 and miR-155a genes expression in discriminating	
	relapsed from remitted patients	
28	ROC curve analysis presents the prognostic potential of	97
	Lnc_CCAT1 and miR-155a genes expression in discriminating	
	patients with blast count	
29	ROC curve analysis presents the prognostic potential of	98
	Lnc_CCAT1 and miR-155a genes expression in discriminating	
	patients with TLC count	
30	Receiving operating characteristics curve (ROC) analysis presents	98
	the prognostic potential of Lnc_CCAT1 and miR-155a genes	70
	expression in discriminating patients with high platelets count	
	(>100,000/ μ l from those 100,000/ μ l	
	(> 100,000/µ1 110111 tillose 100,000/µ1	