

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Subthreshold micropulse yellow (577nm) laser versus intravitreal Ranibizumab in treatment of center involving diabetic macular oedema

THESIS Submitted FOR PARTIAL FULFILMENT OF MD DEGREE IN OPHTHALMOLOGY

By Esraa Abdelhakeem Mohamed El-Saved Diab

M.B.B.Ch, M.Sc., Ophthalmology Faculty of medicine - Ain Shams University

Supervised by

Prof. Dr. Alaa Fathy Mahmoud

Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Ass. Prof. Mohamed Abdel-hakim Zaki

Assistant Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Ass. Prof. Ahmed Abdel-aleem Mohamed

Assistant Professor of Ophthalmology Faculty of Medicine - Ain Shams University

Dr. Mohamed Hanafy Abdel-aziz

Lecturer of Ophthalmology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain-Shams University Cairo Egypt 2020

List of Contents

Title	Page No.
List of abbreviations	II
List of figures	IV
List of tables	VII
Introduction	1
Diabetic macular oedema	3
Subthreshold micropulse laser	8
Anti- vascular endothelial	19
growth factors	
Aim of the work	32
Review of literature	33
Patients and methods	59
Results	67
Discussion	91
Conclusion	99
Summary	100
References	102
Arabic summary	1

List of abbreviations

BCVA Best corrected visual acuity

BRB Blood retinal barrier
CAMs Cell adhesion molecules
CFT Central foveal thickness
CI Confidence interval

CMT Central macular thicknessCMV Central macular volume

CSME Clinically significant macular oedema

CST Central subfield thicknesss

CW Continuous wave

DC Duty cycle

DM Diabetis mellitus

DME Diabetic macular oedema

DR Diabetic retinopathy

DRCR Diabetic retinopathy clinical research network

DRS Diabetic retinopathy studyEPM Endpoint management

ETDRS Early treatment diabetic retinopathy study

FAF Fundus auto-fluorescenceFAZ Foveal avascular zoneFcRn Neonatal Fc receptor

FFA Fundus fluorescein angiography

FT Foveal thickness

HD-SDM High density subthreshold diode micropulse

HSP Heat shock proteins

ICAM Intracellular adhesion molecules

IOP Intraocular pressure IVI Intravitreal injection

MAPK Mitogen activating protein kinase

mETDRS Modified early treatment diabetic retinopathy

study

mfERG Multifocal electroretinogram

MPL Micropulse laser

ND-SDM Normal density subthreshold diode micropulse

NPDR Non-proliferative diabetic retinopathy

NVAMD Neovascular age related macular degeneration

OCT Optical coherence tomography

PASCAL Pattern Scan Laser

PEDF Pigment epithelium derived growth factor

PDR Proliferative diabetic retinopathy

PKC Protein kinase C

PLGF Placental growth factor PPV Pars plana vitrectomy

PRP Pan retinal photocoagulation
RCTs Randomized controlled trials
ROS Reactive oxygen species
RPE Retinal pigment epithelium

SD OCT Spectral domain optical coherence tomography

SDM Subthreshold diode micropulse

SRT Selective retinal therapy

STMPL Subthreshold micropulse laser TGF-β Transforming growth factor beta

VE Vascular endothelial

VEGF Vascular endothelium growth factor

VEGFRs Vascular endothelial growth factor receptors

VVOs Vesiculo-vacuolar organelles

ZO Zonula occludin

List of figures

Fig. No.		Page NO.
Fig. (1)	Blood retinal barrier	3
Fig. (2)	Pathophysiological mechanisms leading	4
	to macular oedema	
Fig. (3)	Mechanisms induced by hyperglycemia	5
	in the retina leading to DME	
Fig. (4)	The different pathways in the	6
	development of DME	
Fig. (5)	RPE porcine explants irradiated with	13
	140 mJ/cm ² per pulse stained with the	
	vitality marker Calcein AM showing	
	vital cells with green fluorescence	
Fig. (6)	RPE explant picture taken before,	14
	200 ns after (b) and 1 s after (c)	
	irradiation within the area	
Fig. (7)	Nondamaging retinal laser therapy with	15
	Endpoint Management	
Fig. (8)	Mechanism of action of continuous	17
	wave laser versus subthreshold	
	micropulse laser treatment	
Fig. (9)	Endothelium transport mechanism	21
	(Vesiculovacuolar organelles)	
Fig. (10)	Schematic representation of tight	22
	junctions and adherens junuctions in	
	endothelial cells	
Fig. (11)	Pre and post STMPL red free fundus	34
	photographs and FFA	
Fig. (12)	Baseline and 12-month follow-up of a	42
	patient with CSME treated with SDM	
	photocoagulation	
Fig. (13)	Absorption of visible wavelengths by	43
	ocular pigments	

Fig. (14)	Color fundus photograph of patient's right eye with DME	44
Fig. (15)	OCT and FAF of one of the study eyes	57
Fig. (16)	Easyret 577nm yellow laser	65
	photocoagulator, Quantel medical	
Fig. (17)	Consort flow diagram	68
Fig. (18)	Chart showing the mean BCVA at	71
	baseline and during follow up	
Fig. (19)	Chart showing the number of lines	72
	gained at 3,6, 9 and 12 months of	
	follow up	
Fig. (20)	Chart showing percentage of	73
	stabilization, improvement and	
	reduction of BCVA in the MPL at 3, 6,	
F: (01)	9 and 12 months in the MPL group	
Fig. (21)	Chart showing percentage of	74
	stabilization, improvement and	
	reduction of BCVA in the MPL at 3, 6,	
Fig. (22)	9 and 12 months in the IVL group Column chart showing the percentage	75
Fig. (22)	of eyes showing a BCVA of $\geq 20/40$ at	13
	3, 6, 9 and 12 months respectively in	
	group A.	
Fig. (23)	Column chart showing the percentage	75
8 ()	of eyes showing a BCVA of ≥20/40 at	
	3, 6, 9 and 12 months respectively in	
	group B.	
Fig. (24)	Chart showing the mean CST at	76
	baseline and during follow up in both	
	study groups	
Fig. (25)	The mean reduction in CST at 3, 6, 9	78
	and 12 months in the two study groups	
Fig. (26)	Percentage of reduction in CST (µm) at	79
	3, 6, 9 and 12 months in the two study	
	groups.	

Fig. (27)	Chart showing the percentage of study eyes showing resolution of macular oedema after one session versus after two sessions of MPL	80
Fig. (28)	OCT scan of the macula at baseline (A) and at 3months (B) after one session of STMPL	81
Fig. (29)	OCT scan of the macula at baseline (A) and after 12 months (B)	81
Fig. (30)	Primary analysis treatment effect estimates with respect to a two sided 95% CI-group A vs group B at 6 months	82
Fig. (31)	Primary analysis treatment effect estimates with respect to a two sided 95% CI-group A vs group B at 12 months	83
Fig. (32)	OCT scan (a)before STMPL treatment and (b) after STMPL treatment	85
Fig. (33)	OCT scan of Study eye no.7 at baseline, 3, 6,9 and 12 months	88
Fig. (34)	OCT scan of Study eye no.25 at baseline, 3, 6,9 and 12 months	89
Fig. (35)	OCT scan of Study eye no.31 at baseline, 3, 6, 9 and 12 months	90

List of tables

Table No.	Title	Page No.
Table (1)	Laser parameters and application	49
	patterns in previous studies	
Table (2)	Demographic data of the two study	67
	groups at baseline	
Table (3)	Baseline study eye characteristics	69
Table (4)	The mean BCVA (log MAR) at	71
	baseline and during each follow up visit	
Table (5)	Number of lines gained at 3, 6, 9 and	72
	12 months of follow up	
Table (6)	The mean CST in the two study groups	77
	at baseline, 3, 6, 9and 12 months	
Table (7)	The mean reduction in CST at 3, 6, 9	78
	and 12 months in the two study groups	
Table (8)	Percentage of reduction in CST at 3, 6,	79
	9 and 12 months in the two study	
	groups	

Introduction

he management of diabetic macular oedema (DME) has substantially changed over the years due to the advancement in pharmacotherapy with intravitreal injections (IVI) of anti-vascular endothelial growth factor (VEGF). However, the traditional laser treatment proposed by the Early Treatment Diabetic Retinopathy Study (ETDRS) is still being used for its efficacy, low cost and easy processing.

Despite the improvements and the satisfactory results of laser photocoagulation, adverse events such as central scotoma, loss of central vision, decreased color vision, preretinal and subretinal fibrosis and choroidal neovascularization can still occur, mostly caused by permanent destruction of the photoreceptors and the progressive enlargement of the laser scars, consequent to the visible burn endpoint of conventional threshold laser photocoagulation¹⁻²⁻³⁻⁴.

Results of the diabetic retinopathy clinical research (DRCR) network protocol I trial showed that intravitreal Ranibizumab (a humanized monoclonal antibody fragment which competitively inhibits VEGF in the extracellular space), with prompt or deferred laser was more effective compared with prompt laser alone for the treatment of DME involving the central macula after one year follow up, and that the vision gains were maintained through 5 years follow up with little additional treatment needed after 3 years ⁵⁻⁶.

Several other studies have been conducted to investigate the efficacy and safety of Intravitreal Ranibizumab in treatment of DME including the READ-2 study, the RESOLVE study, the

RESTORE study and the RISE and RIDE studies which showed that ranibizumab is effective in improving best corrected visual acuity (BCVA) and is well tolerated in DME⁷⁻⁸⁻⁹⁻¹⁰.

Although Ranibizumab was demonstrated to be effective, a major concern, is that DME will return as the effect of the intravitreal drug lessens, necessitating repetitive long term injections. Another concern is the financial burden of repeated intravitral injections of ranibizumab. That led to the emergence of new modalities of laser treatment for management of diabetic retinopathy (DR), including selective retinal therapy (SRT) and micropulse laser (STMPL) subthreshold in which the modification of laser parameters and using selective laser wave lengths can produce less destructive and more therapeutic effect.

The state of the art of STMPL has been shown to be effective in the treatment of DME in terms of BCVA, central macular thickness (CMT), and macular sensitivity¹¹⁻¹²⁻¹³⁻¹⁴. STMPL has also been suggested to have anti-inflammatory effects reducing the number of hyper-reflective spots (sign of activated microglia cells in the retina), microaneurysms, disorganization of the inner retinal layers extension, and the area of cysts¹⁵. Also, several prospective randomized trials have reported equal improvement in BCVA and retinal thickness between STMPL and conventional ETDRS laser photocoagulation in DME¹⁶⁻¹⁷⁻¹⁸⁻¹⁹⁻²⁰.

Diabetic macular oedema

R is a leading cause of vision-loss globally. Of an estimated 285 million people with diabetes mellitus worldwide, approximately one third have signs of DR and of these, a further one third of DR is vision-threatening DR, including DME. DME is responsible for most of the visual loss experienced by patients with diabetes²¹.

Pathophysiology of DME:

DME results from abnormal leakage of fluid and macromolecules, such as lipoproteins, from retinal capillaries (i.e. the inner blood retinal barrier (BRB) as shown in figure 1) into the extravascular space. This is followed by an influx of water into the extravascular space due to increased oncotic pressure²², as shown in figure (2).

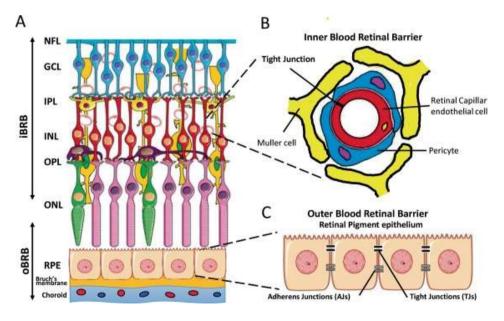


Fig.(1). Blood retinal barrier. (A) Schematic representation of the retinal layers with inner BRB and outer BRB. (B) Inner BRB. (C) Outer BRB²³.

The retinal pigment epithelium (RPE) normally acts as a barrier to fluid flow from the choriocapillaris to the retina and also actively pumps fluid out of the retina (i.e. the outer BRB as shown in figure 1). Thus, abnormalities in the RPE may contribute to DME allowing increased fluid access from the choriocapillaries or decreasing the normal efflux of fluid from the retina²².

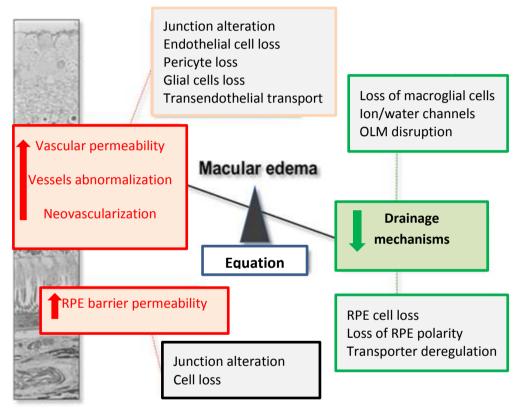


Fig.(2). Pathophysiological mechanisms leading to macular edema. Macular oedema results from an imbalance between fluid entry and fluid exit, leading to intraretinal or subretinal fluid accumulation, driven by Starling equation²².

Hyperglycemia has been considered as the main cause of the onset and progression of DME and DR²⁴ as shown in figure (3). However, hyperglycemia does not fully explain the wide range of functional and cellular changes that appear over the course of DR.

12