

بسم الله الرهكن الرجيم

$\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد

Enhancement of Lovastatin Production using Gamma Irradiated Aspergillus terreus

Thesis

Submitted to the Faculty of Science- Ain Shams University In partial fulfillment for the Degree of Doctor of Philosophy (Ph.D.) in Science in Microbiology

By

Mahmoud Farag Abd El-Mutalb Khalil

Assistant Lecturer, Radiation Microbiology Depart.

National Center for Radiation Research and Technology (NCRRT)

Atomic Energy Authority (AEA), Cairo, Egypt

Under Supervision

Prof. Dr. Saadia M. Easa

Prof. of Microbiology Microbiology Depart. Faculty of Science Ain Shams Univ. Prof. Dr. Zakaria A. Mattar

Prof. of Microbiology Radiation Microbiology Depart. NCRRT. AEA.

Prof. Dr. Mahmoud A. Khalaf

Prof. of Microbiology Radiation Microbiology Depart. NCRRT. AEA

Enhancement of Lovastatin Production using Gamma Irradiated Aspergillus terreus

Thesis Submitted for the Ph.D. of Science (Microbiology)

By

Mahmoud Farag Abd El-Mutalb Khalil

Assistant Lecturer, Radiation Microbiology Depart.

National Center for Radiation Research and Technology (NCRRT)

Atomic Energy Authority (AEA), Cairo, Egypt

Department of Microbiology Faculty of science Ain Shams University

Approval sheet

Thesis Submitted for Ph.D. degree in Science (Microbiology)

Name: Mahmoud Farag Abd El-Mutalb Khalil

Title: Enhancement of Lovastatin Production using Gamma Irradiated Aspergillus terreus

Supervisors: (Signature)

Prof. Dr. Saadia M. Easa

Prof. of Microbiology, Microbiology Department, Faculty of Science, ain Shams University.

Prof. Dr. Zakaria A. Matter

Prof. of Microbiology, Radiation Microbiology Department, NCRRT, EAEA

Prof. Dr. Mahmoud A. Khalaf

Prof. of Microbiology, Radiation Microbiology Department, NCRRT, EAEA

Examination Committee:

Prof. Dr. Saadia M. Easa

Prof. of Microbiology, Microbiology Department, Faculty of Science, ain Shams University.

Prof. Dr. Zakaria A. Matter

Prof. of Microbiology, Radiation Microbiology Department, NCRRT, EAEA.

Prof. Dr.Mahmoud Mostafa Ammer

Prof. & Head of Microbiology Department, Microbiology Department, Faculty of Science, Tanta University

Prof. Dr. Ashraf sabry Abd El-Fatah Ehsaid

Prof. of Microbiology, Microbiology Department, Faculty of Science, Elzagazig University.

Declaration

This thesis has not been previously submitted for any other universities.

Signature

Mahmoud farag Abd elmutalb khalil

<u>Acknowledgement</u>

I am deeply thankful to **ALLAH** by the grace of whom this work was done.

I would like to thank with deep appreciation **Prof. Dr. Saadia M. Easa** Professor of Microbiology, Faculty of Science, Ain Shams University, for helping and supporting me in many ways during these years, deep thanks for her valuable guidance, supervision and continuous encouragement during this work.

My deep gratitude to **Prof. Dr. Zakaria A. Matter** Professor of Microbiology, National Center for Radiation Research and Technology (NCRRT), Egyptian atomic Energy authority (EAEA) for suggesting the point and continuous help in the theoretical and practical parts of this work and for direct supervision, guidance and for his critical reading of the manuscript.

I am really grateful to **Prof. Dr. Mahmoud A. Khalaf** Professor of Microbiology, NCRRT, EAEA, for his continuous encouragement during this work

My thanks are extended to my colleagues at the Radiation Microbiology Department, (NCRRT) and to everyone who participated in completion of this work.

Mahmoud Farag Khalil

CONTENTS

No	Subject	Page
	Acknowledgement	
	Contents	I
	Abstract	III
	List of Abbreviations	IV
	List of Tables	V
	List of Figures	VII
	List of Photos	IX
	Aim of the work	X
1	Introduction	1
2	Literature Review	4
3	Materials and Methods	32
4	Results	50
4.1.	Screening of some Aspergillus terreus for lovastatin production	50
4.2.	Validation structure of produced lovastatin	52
4.3.	Validation of identification A. terreus S3	55
4.4.	Effect of gamma radiation on lovastatin production by A. terreus S3	56
4.5.	Factors affecting lovastatin production by <i>A. terreus</i> S3γ8	58
4.5.1.	Influence of incubation period	58
4.5.2.	Influence of initial pH	60
4.5.3.	Effect of incubation temperature	62
4.5.4.	Effect of carbon sources	64
4.5.4.1.	Effect of different starch concentrations	66
4.5.5.	Effect of nitrogen sources	68
4.5.5.1.	Effect of different yeast extract concentrations	70
4.5.6.	Effect of different KH ₂ PO ₄ concentrations	72
4.5.7.	Effect of different MgSO ₄ concentrations	74
4.5.8.	Effect of different MnSO ₄ concentrations	76
4.5.9.	Effect of inoculum type	78
4.5.9.1.	Effect of inoculum age	80
4.5.9.2.	Effect of inoculum density	82
4.5.10.	Effect of agitation speed	84
4.5.11.	Effect of working volum	86
4.6.	Response surface methodology effect	88
4.6.1.	Independent variable screening by PB design	88
4.6.2.	Optimization by central composite design	90
4.7.	Effect of addition of some precursors	92
4.7.1.	Effect of amino acids	92
4.7.1.1.	Effect of methionine concentrations	94
4.7.1.2.	Effect of methionine time addition	96
4.7.2.	Effect of vitamins	98
4.7.2.1.	Effect of nicotinamide concentrations	100
4.7.2.2.	Effect of nicotinamide time addition	102
4.7.3.	Effect of antibiotics	104
4.7.3.1.	Effect of tetracycline concentration	106
4.7.3.2.	Effect of tertracycline time addition	108
4.8.	Lovastatin production by sponge-immobilized cells of <i>A. terreus</i> S3γ	110

Contents

4.8.1.	Effect of immobilized inoculum age.	112
4.8.2.	Effect of immobilized inoculum density	114
4.8.3.	Effect of incubation period	116
4.8.4.	Effect of repeated batch fermentation	118
5.	Discussion	120
6.	Summary	137
7.	References	141
	Arabic Summary	1

Abstract

The role of hypercholesterolemia as a risk factor for atherosclerosis, and ischemic heart disease was indicated by the clinical, epidemiologic and pathologic studies. Lovastatin ($C_{24}H_{36}O_5$) is the first compound of its kind to become available for treatment of hypercholesterolemia. The present work has been devoted to study the effect of different parameters on lovastatin production by the local isolated gamma irradiated strain of Aspergillus terreus, in an attempt to maximize the production, and also to develop a potential fermentation process for the production of lovastatin using ppww as cheap production medium. Response surface methodology (RSM) was employed to study the effect of culture medium on the production of lovastatin in SmF cultures by A.terreus S3y8. Under response surface methodology (RSM) design, high concentration of lovastatin (540 mg/L.) was achieved at initial pH 6, incubation temperature 30 °C, agitation rate 150 rpm. 4% soluble starch and 0.3% yeast extract as carbon and nitrogen sources, respectively, after 8 days when the production medium was inoculated with 48 hr. age from 10% seed culture inoculums.

Furthermore, the results showed supplementation of amino acid methionine (0.1 g/L.) and vitamin nicotinamide

(1 mg/L.), as well as, antibiotic tetracycline (50mg/L.) to the production medium after 48 hr. of inoculation increased the yield of lovastatin to 813.66 mg/L.

Immobilized *A. terreus* S3γ8 spores in sponge cubes produced the highest amount of lovastatin reached up to 962.66 mg/L. Agro-industrial waste (potato processing wastewater, PPWW) was tested as the main culture medium for lovastatin production by this immobilized fungus under optimizing culture conditions for repeated 5 cycles. The results showed that, high amount of lovastatin production (787 mg/L.) was recorded at the second cycle.