

### بسم الله الرحمن الرحيم

 $\infty\infty\infty$ 

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد





Synthesis, spectral and chemical reactivity studies of ruthenium complexes of flexible pyridyl polydentate ligands and their immobilized derivatives in solid supports

A Thesis Submitted for the Degree of Ph.D.

By

Nihad Ghalib Rashid

M.Sc. (2018)

To

Chemistry Department, Faculty of Science, Ain Shams University

#### Supervised by

#### Prof. Dr. Ramadan Mohamed Ramadan

Professor of Inorganic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University

#### Prof. Dr. Ayman Ahmed Abdel Aziz

Professor of Inorganic Chemistry, Chemistry department, Faculty of Science, Ain Shams University

#### Dr. Mostafa Abdellah Sayed Ahmed

Lectrurer of Inorganic Chemistry, Chemistry department, Faculty of Science, Ain Shams University





Synthesis, spectral and chemical reactivity studies of ruthenium complexes of flexible pyridyl polydentate ligands and their immobilized derivatives in solid supports

A Thesis Submitted for the Degree of PhD

By
Nihad Ghalib Rashid
M.Sc. (2018)

To

Chemistry Department, Faculty of Science, Ain Shams University





Synthesis, spectral and chemical reactivity studies of ruthenium complexes of flexible pyridyl polydentate ligands and their immobilized derivatives in solid supports

# By Nihad Ghalib Rashid M.Sc. (2018)

Thesis Advisors Approved

#### Prof. Dr. Ramadan Mohamed Ramadan

Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University

#### Prof. Dr. Ayman Ahmed Abdel Aziz

Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University

#### Dr. Mostafa Abdellah Sayed

Lecturer of Inorganic Chemistry, Faculty of Science, Ain Shams University

> Head of Chemistry Department Prof. Dr. Magdy A.M. Ibrahim





**Student Name: Nihad Ghalib Rashid** 

Scientific Degree: Ph.D.

**Faculty Name: Faculty of Science** 

**Graduation Year: 1998** 

**Granting Year: 2022** 



سورة البقرة الآية: ٣٢

#### Acknowledgment

First and foremost, I would like to thank God for giving me the opportunity and well-power to accomplish this work.

Foremost, I would like to express my thanks to Prof. Dr. Ramadan Mohamed Ramadan, for giving me the chance to be one of his students and for his generous advices, valuable discussions and his guidance helped me in all the time of research and writing of this thesis, Prof. Dr. Ayman Ahmed Abdel Aziz, who helped me greatly, useful guidance effective contributions, and gave me the confidence to express my ideas freely, Dr. Mostafa Abdellah Sayed, for the continuous support of my Ph.D. Study and research, for his patience, motivation, enthusiasm, and immense knowledge.

Last but not the least, I would like to thank my family: my parents and my wife, for supporting me spiritually throughout my life.

Níhad Rashíd

#### **ABSTRACT**

Six new bicombartment Schiff bases were prepared via condensation of 2-benzoylpyridine, Di(2-pyridyl)ketone, 2-hydroxy-3-methoxy benzaldehyde with the diamines diethylenetriamine (Dien) and 2,2'- (ethylenedioxy)-bis-(ethylamine) (EDEA) in 2:1 molar ratio using standard synthesis methods. A new series of ruthenium(II) and ruthenium(III) complexes were also prepared and fully characterized by elemental analysis, FT-IR, ¹H-NMR, UV-vis, conductivity, and magnetic susceptibility measurements. Biological activities of the synthesized ruthenium(II) complexes were investigated by studying their ability to interact with CT-DNA, antioxidant scavenging, cytotoxicity against some cancer line cells. In addition, the Ru(II) complexes were immobilized on silica surface and factors affecting their adsorption capacity such as pH, contact time and silica dose were studied.

**KEYWORDS**: Flexible ligands; Tetradentate dipyridyl derivatives; Ruthenium complexes, Bio efficiency; Solid support.



## **Contents**



#### **Contents**

| Title        |                                                            | Page |
|--------------|------------------------------------------------------------|------|
| List of Tab  | les                                                        | V    |
| List of Sche | emes                                                       | vi   |
| List of Figu | res                                                        | viii |
| List of Abb  | reviation                                                  | ХX   |
| Accepted A   | Articles                                                   | xxii |
| Chapter 1:   | Introduction                                               |      |
| 1.1.         | Schiff base ligands                                        | 1    |
| 1.2.         | Importance of Schiff bases                                 | 2    |
| 1.3.         | Flexible Schiff bases                                      | 4    |
| 1.4.         | Schiff base metal complexes                                | 6    |
| 1.5.         | Ruthenium complexes                                        | 12   |
| Chapter 2:   | Experimental                                               |      |
| 2.1.         | Materials and Methods                                      | 58   |
| 2.2.         | Instrumentation                                            | 58   |
| 2.3.         | 2.2. Syntheses                                             | 59   |
| 2.3.1.       | Synthesis of bridged binucleating tetradentate Schiff base | 59   |
| 2.3.1.       | ligands.                                                   |      |
| 2.3.2        | General procedure for the synthesis of binuclear           | 61   |
|              | ruthenium(III) complexes (1-6)                             |      |
| 2.3.3.       | Synthesis of Ru(II) complexes (7 & 8)                      | 61   |
| 2.4.         | CT-DNA Binding Assay                                       | 62   |
| 2.4.1.       | UV-visible absorption titration experiments                | 62   |

| 2.4.2.     | Competing binding fluorescence studies                  | 63  |
|------------|---------------------------------------------------------|-----|
| 2.4.3.     | Viscosity Measurements                                  | 64  |
| 2.5.       | Antioxidant Activity Evaluation                         | 65  |
| 2.6.       | In vitro anticancer activity                            | 65  |
| 2.7.       | Immobilization of Ru(II) complexes on Silica gel (Batch | 67  |
|            | adsorption experiments)                                 |     |
| 2.7.1.     | Adsorption equilibrium time.                            | 67  |
| 2.7.2.     | Effect of PH on adsorption                              | 68  |
| 2.7.3      | Effect of silica dose                                   | 69  |
| Chapter 3: | Results and Discussion                                  |     |
| 3.         | Results and Discussion                                  | 69  |
| 3.1        | Conductivity Measurements                               | 72  |
| 3.2        | Magnetic moments                                        | 72  |
| 3.3.       | ESI-MS Spectra Characterization                         | 73  |
| 3.4.       | FT-IR Spectra                                           | 81  |
| 3.5.       | <sup>1</sup> H-NMR spectra                              | 91  |
| 3.6.       | Electronic Spectra                                      | 97  |
| 3.7.       | Biological evolution                                    | 104 |
| 3.7.1.     | Interaction of the complexes with CT DNA                | 104 |
| 3.7.1.1.   | UV-Visible spectroscopic studies                        | 104 |
| 3.7.1.2.   | EB Competition Quenching Studies                        | 114 |
| 3.7.1.3.   | Viscosity Measurements                                  | 124 |
| 3.7.2.     | Scavenging capacity                                     | 126 |
| 3.7.3.     | Cytotoxicity                                            | 128 |
|            |                                                         |     |

| 3.8.           | Immobilization of ruthenium complexes Studies | 131 |
|----------------|-----------------------------------------------|-----|
| 3.8.1.         | FT-IR Studies on Nature of Adsorption         | 131 |
| 3.8.2.         | Effect of pH on adsorption                    | 133 |
| 3.8.3.         | Effect of contact time                        | 134 |
| 3.8.4.         | Effect of silica gel dose                     | 135 |
| Conclusio      | ns                                            | 137 |
| References     |                                               | 139 |
| Arabic summary |                                               | ĵ   |

#### **List of Tables**

| No.        | Table Title                                                      | Page |
|------------|------------------------------------------------------------------|------|
| Table 3.1. | Micro-analytical data and physical properties of the             | 70   |
|            | Schiff base ligands.                                             |      |
| Table 3.2. | Micro-analytical data and physical properties of the             | 71   |
|            | ruthenium complexes.                                             |      |
| Table 3.3. | Magnetic moments and conductivity data of the                    | 73   |
|            | ruthenium complexes (1-8).                                       |      |
| Table 3.4. | IR data of Schiff bases ligands.                                 | 82   |
| Table 3.5. | IR data of ruthenium complexes (1-8).                            | 83   |
| Table 3.6. | Electronic spectral data of the ligands and ruthenium            | 99   |
|            | complexes.                                                       |      |
| Table 3.7. | DNA binding constant (K <sub>b</sub> ) and Stern-Volmer constant | 115  |
|            | (K <sub>SV</sub> ) for ruthenium complexes ( <b>1-8</b> ).       |      |

#### **List of Schemes**

| No.          | Table Title                                                                                                    | Page |
|--------------|----------------------------------------------------------------------------------------------------------------|------|
| Scheme 1.1.  | Types of Schiff bases based on chelating property                                                              | 2    |
| Scheme 1.2.  | Synthesis of the ligand PN4                                                                                    | 19   |
| Scheme 1.3.  | (a) The planar μ4-bpym in compound                                                                             | 23   |
|              | $\{[Co_2(bpym)(N_3)_4]\cdot MeCN\}_n;$ (b) the twisted $\mu 4$ -bpym                                           |      |
|              | in compound [Co(bpym)(N <sub>3</sub> ) <sub>2</sub> ] <sub>n</sub> ; (c) the twisted $\mu$ 2-                  |      |
|              | bpym in [Mn(bpym)( $N_3$ ) <sub>2</sub> ] <sub>n</sub> ; (d) the planar $\mu$ 2-bpym                           |      |
|              | in {[Ni <sub>3</sub> (bpym) <sub>3</sub> (N <sub>3</sub> ) <sub>6</sub> ]·2H <sub>2</sub> O} <sub>n</sub>      |      |
| Scheme 1.4   | Re(I) carbonyl complexes bearing fac-[Re(CO) <sub>3</sub> ]                                                    | 39   |
|              | fragment reported in last work.                                                                                |      |
| Scheme 1.5.  | The synthetic procedures for                                                                                   | 41   |
|              | $[(R_3Sn)_2(O_2CC_5H_3NS)_2]_n$ (R = Me: 1; n-Bu: 2),                                                          |      |
|              | $[(R_3Sn)_2(O_2CC_6H_4S)_2]n (R = Me: 3; n-Bu: 4),$                                                            |      |
|              | $[(R_3Sn)_2(O_2CCH_2S)_2]_n$ (R = Me: 5; n-Bu: 6).                                                             |      |
| Scheme 1.6.  | Synthesis of the two bis(pyridylurea) ligand.                                                                  | 42   |
| Scheme 1.7.  | Synthetic scheme and structures for the chelating                                                              | 45   |
|              | amine ligands subjected to in situ as well as                                                                  |      |
|              | palladium precatalyst studies.                                                                                 |      |
| Scheme 1.8.  | Few examples of highly active and commercially                                                                 | 46   |
|              | available pre-catalysts.                                                                                       |      |
| Scheme 1.9   | Preparation of 'SiO2'-NH <sub>2</sub> -RuIII.                                                                  | 47   |
| Scheme 1.10. | Schematic representations of syntheses towards                                                                 | 50   |
|              | C <sub>18</sub> /C <sub>19</sub> -derivatized WRC and PS: (i) NaH, DMF, rt, 45                                 |      |
|              | min; (ii) C <sub>18</sub> H <sub>37</sub> -I, rt, 15 h; (iii) Co(ClO <sub>4</sub> ) <sub>2</sub> , MeOH, rt, 3 |      |

|              | h; (iv) Ru(bpy) <sub>2</sub> Cl <sub>2</sub> , EtOH/H <sub>2</sub> O, 100 °C, 24 h; (v)  |    |
|--------------|------------------------------------------------------------------------------------------|----|
|              | NH <sub>4</sub> PF <sub>6</sub> , H <sub>2</sub> O. Detailed synthetic procedures are    |    |
|              | given in the experimental part.                                                          |    |
| Scheme 1.11. | Schematic illustration of WRC and PS adsorption on                                       | 50 |
|              | hydrophobic silica. (i) 3, 5, 7 (or 6), MeOH, rt, 30 min                                 |    |
|              | (ii) 0.1 M NaOTf electrolyte, MeOH evaporation.                                          |    |
|              | Detailed synthetic procedures are given in the                                           |    |
|              | experimental part.                                                                       |    |
| Scheme 1.12. | Syntheses of N,O-Schiff bases (L <sup>1</sup> H, L <sup>2</sup> H, L <sup>3</sup> H) and | 52 |
|              | schematic representation of N,N´-diamine ligand L⁴                                       |    |
| Scheme 1.13. | Syntheses of ruthenium complexes 1-4.                                                    | 52 |
| Scheme 1.14. | Syntheses of ruthenium complexes 5-7.                                                    | 53 |
| Scheme 1.15. | Immobilization of ruthenium complexes 2 and 5                                            | 55 |
|              | with N,O- or N,NO -bidentate ligand bearing alkoxy                                       |    |
|              | silyl group on SBA-15 by condensation.                                                   |    |
| Scheme 1.16. | Preparation of materials M1 and M3.                                                      | 57 |
| Scheme 1.17. | Preparation of M4 by confinement of complex 8 in                                         | 58 |
|              | mesostructured silica M2.                                                                |    |
| Scheme 2.1.  | Synthetic routes of the Schiff bases L <sup>1</sup> and L <sup>2</sup> .                 | 61 |
| Scheme 2.2.  | Synthetic routes of the Schiff bases L <sup>3</sup> and L <sup>4</sup> .                 | 61 |
| Scheme 2.3.  | Synthetic routes of the Schiff bases ligands H <sub>2</sub> L¹ and                       | 62 |
|              | $H_2L^2$ .                                                                               |    |