

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

PRACTICAL TECHNICAL COMPARATIVE STUDY WITH ECONOMIC INDICATORS FOR CARBON DIOXIDE EMISSIONS SEQUESTRATION IN EGYPT, APPLICATION IN AN OIL FIELD IN WESTERN DESERT

By

AHMED ABDEL-AZIZ MAHMOUD ELMEZAIN

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
CHEMICAL ENGINEERING

PRACTICAL TECHNICAL COMPARATIVE STUDY WITH ECONOMIC INDICATORS FOR CARBON DIOXIDE EMISSIONS SEQUESTRATION IN EGYPT, APPLICATION IN AN OIL FIELD IN WESTERN DESERT

By AHMED ABDEL-AZIZ MAHMOUD ELMEZAIN

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in **Chemical Engineering**

Under the Supervision of

Prof. Dr. Dr.

Nabil Mahmoud Abdel-Monem H

Hassan Ibrahim Abou-Bakr Shimi

Professor of Chemical Engineering Department Faculty of Engineering, Cairo University Lecturer of
Chemical Engineering Department
Faculty of Engineering, Cairo University

PRACTICAL TECHNICAL COMPARATIVE STUDY WITH ECONOMIC INDICATORS FOR CARBON DIOXIDE EMISSIONS SEQUESTRATION IN EGYPT, APPLICATION IN AN OIL FIELD IN WESTERN DESERT

By AHMED ABDEL-AZIZ MAHMOUD ELMEZAIN

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in

Chemical Engineering

Approved by the Examining Committee	
Prof. Dr. Nabil Mahmoud Abdel-Monem	(Thesis Main Advisor)
Prof. Dr. Shakinaz Taha ElSheltawy	(Internal Examiner)
Prof. Dr. Nahed kamal Attia Prof. of Chemical Engineering and Pilot Plant Depart	(External Examiner) rtment, National Research Center

Engineer's Name: Ahmed Abdel-Aziz Mahmoud El-Mezain

Date of Birth:01/11/1990.Nationality:Egyptian

E-mail: a.abdel-aziz@bapetco.net

Phone: 01272225761

Address: ElSantah- Gharbeya- Egypt

Registration Date: 10/2017 **Awarding Date:** ../.../2022

Degree: Master of Science **Department:** Chemical Engineering

Supervisors:

Prof. Nabil Mahmoud Abdel-Monem Dr. Hassan Ibrahim Abou-Bakr Shimi

Examiners:

Prof. Nahed Kamal Attia (External examiner)

Prof. of Chemical Engineering and Pilot Plant

Department, National Research Center

Prof. Shakinaz Taha El-Sheltawy (Internal examiner) Prof. Nabil M. Abdel-Monem (Thesis main advisor)

Title of Thesis:

PRACTICAL TECHNICAL COMPARATIVE STUDY WITH ECONOMIC INDICATORS FOR CARBON DIOXIDE EMISSIONS SEQUESTRATION IN EGYPT, APPLICATION IN AN OIL FIELD IN WESTERN DESERT

Key Words:

Carbon Dioxide; sequestration; microalgae; enhanced oil recovery; injection

Summary:

This thesis discussed firstly the environmental situation of CO₂ emissions and the global coalition to counteract the problem of climate change then a simple review about different pathways to sequester emitted CO₂, followed by a SWOT analysis to select best pathways applicable in Egypt, two pathways were adopted; biological sequestration and geological sequestration. For both pathways, technical model and economic calculations were proposed.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ahmed Abdel-Aziz Mahmoud El-Mezain Date: ../../2022

Signature:

Dedication

I wish to dedicate this work to the humanity; everybody seeks to live in a cleaner environment, everybody keen to make whatever it should be to combat climate change. I'm happy to zoom in and speak to the Muslim community for whom I belong, they should bear on their shoulders — as they used to do in the previous eras- the target of driving humans towards peace and prosperity. I also wish to dedicate this work to my sincere wife who stands beside me in every situation through our life.

Acknowledgments

The completion of this research couldn't have been possible without the full support and mercy of our great God, then the full expertise of my supervisors including both staff in Cairo University; Prof. Dr. Nabil Abdel-Monem and Dr. Hassan El-Shimi and Tanta university Dr. Mostafa El-Shobary and Dr. Rania El-Shnody. I'd like also to thank the examiners who joined the jury: Prof. Dr. Shakinaz El-Sheltawy and Prof. Dr. Nahed Attia for their support and cooperation.

Special thanks should be directed to Company X team who were fully cooperative, workmates in the following departments; reservoir engineering, production technology, production, geology and petrophysics teams.

Last but not the least, I'd like to thank my dear family; my lovely parents Mr. Abdelaziz, whose soul was a guidance, and Mrs. Hoda who helped me a lot with her sincere prayers, my sincere wife Dr. Walaa who is my devoted life partner, my dear son Abdel-Aziz and daughter Farida, without them none of this would indeed be possible.

Table of Contents

DISCLA	[MER
ACKNO	WLEDGMENTSIII
DEDICA	TIONII
LIST OF	TABLESVIII
LIST OF	FIGURESIX
NOMEN	CLATUREX
ABSTRA	CTXI
CHAPTE	CR 1: INTRODUCTION1
1.1. 1.2.	CLIMATE CHANGE AND WHAT INCENTIVES BEHIND RESEARCH IN IT1 ORGANIZATION OF THE THESIS
СНАРТЕ	CR 2 : LITERATURE REVIEW3
2.1.	Introduction3
2.1.1.	TACKLING THAT GLOBAL PROBLEM3
2.1.2.	CARBON DIOXIDE UTILIZATION PATHWAYS FOR CCU 3
2.2.	RELATED WORK5
2.2.1. CAPTUR	MICROALGAE CULTURING FOR CARBON DIOXIDE RE AND BIO-REFINERY5
2.2.1.1.	ALGAL GROWTH AND CARBON DIOXIDE CAPTURE6
2.2.1.2.	HARVESTING AND DEWATERING OF MICROALGAE7
2.2.1.3.	BIOREFINING8
2.2.1.3.1.	YIELD OF ALGAE OILS8
2.2.1.3.2.	OPTIONS OF BIOREFINING8
2.2.2.	CARBON DIOXIDE WAYS OF STORING10
2.2.2.1.	ENHANCED OIL RECOVERY11
2.2.2.1.1.	PROCESS STEPS/ FLOW CHART12
2.2.2.1.2.	MECHANISM13
_	CR 3 :THEORETICAL APPROACH OF CARBON DIOXIDE CON
3.1.	SWOT ANALYSIS TO SELECT BEST SEQUESTRATION PATHWAYS14
3.2.	SOME THEORETICAL DATA ABOUT CARBON DIOXIDE INJECTION14
3.2.1.	TARGET STORAGE BASINS14
3.2.1.1.	SALINE AOUIFERS15

3.2.1.2.	DEPLETED PETROLEUM RESERVOIRS	.16
3.2.1.3.	UNMINEABLE COALBED SEAMS	.17
3.2.1.4.	CARBON DIOXIDE STORAGE IN GEOTHERMAL	
UNDERGROUN	D SYSTEMS AS AN ALTERNATIVE TO WATER	.17
3.2.1.5. OCEANS	CARBON DIOXIDE INJECTION IN DEEP WATERS IN	17
3.2.2.	SELECTION CRITERIA OF INJECTION SITE	
3.2.2.1.	GEOLOGY CRITERIA	
3.2.2.2.	LOCAL GEOTHERMAL GRADIENT AND ITS INTER-	
	P WITH CARBON DIOXIDE PHASE BEHAVIOR, REQUIRE	
INJECTION DE	PTH AND MINIMUM REQUIRED INJECTION PRESSURE.	.18
3.2.2.3.	GEO-HAZARDS AND TECTONIC STABILITY	.18
3.2.2.4.	HYDRO-DYNAMISM OF UNDERGROUND FORMATIONS	
3.2.2.5.	POLITICAL AND SOCIETAL CRITERIA	
3.2.2.6.	ECONOMIC CRITERIA OF SITE SELECTION	.20
3.2.3. RESERVOIR	CARBON DIOXIDE BEHAVIOR IN THE SELECTED	20
3.2.3.1. [24]	CARBON DIOXIDE BEHAVIOR TO ENHANCE RECOVERY	
3.2.3.2.	INDUCED SEISMICITY	
3.2.4. CARBON DIOX	CALCULATION OF RESERVOIR CAPACITY FOR IDE STORAGE	.21
3.2.5. INJECTION	OPERATIONAL ASPECTS OF CARBON DIOXIDE	21
3.2.5.1.	WELL TYPE AND INJECTION RATE	.21
3.2.5.2.	CARBON DIOXIDE PURITY	.21
3.2.6.	REVENUES FROM OIL AND GAS RECOVERY BY IDE INJECTION	22
	ON DIOXIDE IN FIELD 2 FIELD IN WESTERN DESERT FOR ECOVERY	.22
3.3.1.	OVER VIEW ABOUT COMPANY X RESERVOIRS	.22
3.3.2.	GEOLOGIC CRITERIA OF THE SELECTED RESERVOIR	`
FOR INJECTIO	N	.22

3.3.3. SAFA	BEHAVIOR OF INJECTED CARBON DIOXIDE IN LOWER23
.3.3.4 SELEC	INJECTION PATTERN, WELLS DESCRIPTION AND FION
.3.3.5	FLOW LINE SELECTION24
3.3.6.	MATERIAL SELECTION25
3.3.7. DOWNI	SIZE AND THICKNESS SELECTION OF FLOWLINE AND HOLE COMPLETION25
3.3.8.	PRESSURE DROP IN INJECTION SYSTEM28
3.3.9.	FLOW LINE SIZE CALCULATION30
3.3.10.	CARBON DIOXIDE GAS COMPRESSOR SELECTION30
	CRP (CO ₂ REMOVAL PLANT) & FIELD 2 ACID GAS NT TO DETERMINE NEED FOR DEHYDRATION AND REMOVAL HER IMPURITIES31
СНАРТ	ER 4 PROCEDURES, MATERIALS AND APPARATUS33
4.1.	MICROALGAE CULTIVATION ON CARBON DIOXIDE, LAB EXPERIMENT33
4.1.1.	MATERIALS AND METHODS33
4.1.1.1.	MICROALGAE AND CULTURE MEDIUM33
4.1.1.2. CONDI	EXPERIMENTAL SETUP AND CULTIVATION TIONS
4.1.2.	GROWTH MONITORING AND ASSESSED PARAMETERS 36
4.1.2.1.	MICROALGAL DRY WEIGHT36
4.1.2.2.	LIPID EXTRACTION36
СНАРТ	ER 5 RESULTS AND DISCUSSION38
.5.1 5.2.	EOR PROJECT ECONOMICS; COST AND REVENUE38 RESULTS OF LAB EXPERIMENTATION OF MICRO ALGAE CULTIVATION38
	RELATIONSHIP BETWEEN ALGAE GROWTH RATE S TIME AND VARIATIONS IN CARBON DIOXIDE
	NTRATIONS
5.3. ARE TI 5.4.	DISCUSSING LAB ALGAL CULTIVATION EXPERIMENT RESULTS, WHAT HE BEST RECOMMENDED CULTIVATION PARAMETERS41 IMPLEMENTING MICROALGAL CULTIVATION PROJECT IN COMPANY X42
5.4.1. CARRO	COMPANY X PRODUCTION PLANTS QUALIFIED FOR N DIOXIDE REUSE42

5.4.2. RECOMMENDE	MICROALGAE SELECTION; WHAT ARE THE D STRAINS?42	2
5.4.3.	SELECTION OF POND45	5
5.4.3.1. SELECTED	POND TYPE; WHY RACEWAY POND SHALL BE45	;
5.4.3.2. CONFIGURATION	RACEWAY POND DESIGN; MECHANICAL ON45	5
5.4.4. LOCATION	POND AREA / LAND REQUIREMENT AND POND	ó
5.4.5. GREENHOUSES	HEAT BALANCE CALCULATIONS TO JUDGE WHETHER OR HEATERS ARE REQUIRED OR NOT46	
5.4.5.1. INFLUENT ENT	DESIGNS APPROACHES OF CARBON DIOXIDE RY INTO THE SYSTEM49)
5.4.6.	CULTURE MEDIA49)
5.4.7. DIOXIDE CONC	DILUTION REQUIREMENT FOR THE HIGH CARBON ENTRATION50)
5.4.8.	MICRO ALGAL BIOMASS PRODUCTION50)
5.4.9. BIOFUELS	CONVERSION OF THE PRODUCED BIOMASS INTO)
5.4.10. KEY DESIGN PA	MICRO ALGAE CULTIVATION PROJECT; SUMMARY OF ARAMETERS AND ECONOMICS51	
CHAPTER 6 CO	NCLUSION AND RECOMMENDATIONS54	Ļ
6.1. EXTRA	REQUIRED RESEARCH FOR MICROALGAL CULTIVATION54	Ļ
6.1.1. RESEARCH MIS	EXTRA RESEARCH IS REQUIRED FOR EOR, POINTS MY SSED:54	
	THREE MAJOR FLOODING PARAMETERS THAT SESSED BEFORE A CARBON DIOXIDE FLOODING	
6.1.1.2. LABORATORY	CARBON DIOXIDE INJECTION REQUIRED TESTS [24]54	ŧ
REFERENCES	55	5
	CONOMIC MODEL FOR MICROALGAE CULTIVATION OMPANY X58	3
	CONOMIC MODEL FOR CARBON DIOXIDE-EOR OMPANY X63	3
الملخص		١

List of Tables

TABLE 1.1: SOURCES OF CARBON DIOXIDE EMISSIONS	2
TABLE 2.1: LIGHT PENETRATION DEPTH (CM) INTO CULTURES OF	
NANNOCHLOROPSIS SP	7
TABLE 2.2: COMPARISON OF GEOLOGICAL SEQUESTRATION OPTION	NS10
TABLE 3.1 SWOT ANALYSIS TO SELECT BEST SEQUESTRATION	
PATHWAYTABLE 3.2: DESCRIPTION OF WELLS SELECTED FOR INJECTION	14
TABLE 3.2: DESCRIPTION OF WELLS SELECTED FOR INJECTION	23
TABLE 3.3: EPRI CARBON DIOXIDE SAMPLE ANALYSIS	
TABLE 4.1: K&C- MEDIUM COMPONENTS (KESSLER & CYGAN, 1970).	
TABLE 5.1: ECONOMIC CALCULATIONS FOR REQUIRED EOR COSTS.	
TABLE 5.2: LAB MICROALGAL EXPERIMENTATION RESULTS	
TABLE 5.3: PRODUCTS OF SOME MICROALGAE SPECIES	
TABLE 5.4: OIL CONTENT AND HABITAT OF SOME MICROALGAE	40
TABLE 5.5: ADVANTAGES & DISADVANTAGES OF SOME STUDIED	
MICROALGAE	41
TABLE 5.6: COMPARISON BETWEEN PHOTOBIOREACTORS AND	
RACEWAYS	
TABLE 5.7: DIESEL PRODUCTION IN FIELD 2 PROJECT FOR DIFFEREN	1 Τ
SEQUESTRATION PERCENTAGES OF CARBON DIOXIDE	
EMITTED EMITTED	47
TABLE 5.8: SUMMARY OF MAIN POINTS IN BIOLOGICAL CULTIVATION	
FIELD2TABLE 5.9: FIELD 2 BIOLOGICAL CULTIVATION COSTS	48
TABLE 5.9: FIELD 2 BIOLOGICAL CULTIVATION COSTS	49
TABLE A.1: CULTIVATION OPERATION ASSUMPTIONS FOR FIELD 2	
TABLE A.2: CULTIVATION INVESTMENT ASSUMPTIONS	
TABLE A.3: TOTAL INVESTMENT COST FOR MICRO ALGAE CULTIVA	
PROJECT	
TABLE A.4: LOAN PAYMENT SCHEDULE	57
TABLE A.5: CASH FLOW CALCULATIONS	
TABLE B.1: INJECTION BUSINESS ASSUMPTIONS FOR FIELD 2	
TABLE B.2: INJECTION INVESTMENT ASSUMPTIONS	
TABLE B.3: TOTAL INVESTMENT COST FOR INJECTION PROJECT	
TABLE B.4: LOAN PAYMENT SCHEDULE	
TABLE B.5: CASH FLOW CALCULATIONS	61

List of Figures

FIGURE 1.1: GHG DISTRIBUTION BY TYPE OF GHG GAS1
FIGURE 2.1: DIFFERENT USAGE PATHWAYS WAYS OF CARBON DIOXIDE4
FIGURE 2.2: COMPARISON BETWEEN CARBON DIOXIDE PATHWAYS5
FIGURE 2.3: SCHEMATIC OF A TYPICAL RACEWAY POND DESIGN
FIGURE 2.4: PATHWAYS BIOFUEL PRODUCTION FROM MICROALGAL
BIOMASS9
9 FIGURE 2.5: PRODUCTS DISTRIBUTION IN THE THREE APPROACHES OF
MICROALGAL BIOMASS REFINERY9
FIGURE 2.6: SOME GEOLOGICAL STORAGE OPTIONS FOR CARBON
DIOXIDE10
FIGURE 2.7: ILLUSTRATION OF THE MULTISCALE ASPECTS OF CARBON
DIOXIDE STORAGE SCIENCE11
DIOXIDE STORAGE SCIENCE
FIGURE 2.9: POST-INJECTION DISPERSION OF CARBON DIOXIDE IN THE
RESERVOIR
FIGURE 3.1: TIME SCALES FOR CARBON DIOXIDE INJECTION TRAPS15
FIGURE 3.2: CARBON DIOXIDE PHASE BEHAVIOR
FIGURE 3.3: STRATIGRAPHIC COLUMN OF PAY ZONES FOR EACH
RESPECTIVE FIELD IN COMPANY X
FIGURE 3.4: RESERVOIR MAP OF FIELD 2 FIELD
FIGURE 3.5: WELL SCHEMATIC OF D14H GAS WELL27
FIGURE 3.6: IDEALIZED FORMATION STRENGTH RESPONSE28
FIGURE 4.1: EXPERIMENTAL SETUP OF CARBON DIOXIDE
SEQUESTRATION ON MICRO ALGAE32
FIGURE 4.2: SEPARATED LIPIDS AFTER CENTRIFUGATION34
FIGURE 4.3: PUMP AND DRAGGER TUBE FOR CO ₂ SAMPLING34
FIGURE 5.1: MONITORING ALGAE GROWTH ALONG INCUBATION PERIOD
OF SCENEDESMUS SP. AT DIFFERENT CONCENTRATIONS OF
CARBON DIOXIDE
FIGURE 5.2: MONITORING ALGAE GROWTH ALONG INCUBATION PERIOD
OF CHLOROCOCCUM SP. AT DIFFERENT CONCENTRATIONS
OF CARBON DIOXIDE
FIGURE 5.3: TIME COURSE FOR LIPID CONTENT OF SCENEDESMUS SP. AT
DIFFERENT CONCENTRATIONS OF CARBON DIOXIDE37
FIGURE 5.4: TIME COURSE FOR LIPID CONTENT OF CHLOROCOCCUM SP.
AT DIFFERENT CONCENTRATIONS OF CARBON DIOXIDE38
FIGURE 5.5:A- DESIGN OF RACEWAY POND, B-DESIGN OF GREENHOUSE
LAYER42
FIGURE A.1: BLOCK FLOW DIAGRAM; INPUTS AND OUTPUTS FROM
CULTIVATION PROJECT55
FIGURE B.1: BLOCK FLOW DIAGRAM; INPUTS AND OUTPUTS FROM
INJECTION PROJECT

Nomenclature

BBL: oil barrel

BCF: billion cubic feet

Btu hr⁻¹ ft⁻² °F⁻¹: British Thermal unit/ (hour.square feet. degree fahrenheit)

capex: capital costsCBL cement bond log

CCS: carbon capture and sequestration CCU: carbon capture and utilization Carbon Dioxide: Carbon Dioxide Company X: Oil company in Egypt CRP: Carbon Dioxide removal plant

DCA: decline curve analysis

ECBM: enhanced coal bed methane

EOR/EGR: enhanced oil recovery/ Enhanced gas recovery

EPC: engineering, procurement and construction **EPRI:** Egyptian petroleum Research Institute

FIELD 2: specific field in company X

G/L: gram per liter

GDP: gross domestic product **GHG**: green house gases

GT: gigatonnes

HCPV: hydrocarbon pore volume

InSAR: Interferometric Synthetic Aperture Radar

IOC: international oil company

IPCC: the united nations intergovernmental parties of climate change

KUSD: thousand USA dollars

L.E. Egyptian pound

MENA: middel east and north africa MJ/m².day: mega joule/ square meter.day mmscf/d: million standard cubic feet per day

MPA: mega pascal

MtCO2e: mega tonne Carbon Dioxide equivalent

OOIP/OGIP: original oil in place/ original gas in place respectively

opex: operational costs
PBR: photobioreactor
PFD: process flow diagram
PSI: pound per square inch
PVC: Polyvinyl Chloride

R&D: research and development

SS: stainless steel

SWOT: strength-weakness-opportunities-threats

Tc: critical temperature
TRL: technological readiness
USIT; ultra sonic imaging tool

VDL variable density log