

بسم الله الرحمن الرحيم

$\infty\infty\infty$

تم عمل المسح الضوئي لهذة الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

اتوتكنوبوج

ملاحظات:

- بالرسالة صفحات لم ترد بالأصل
 - بعض الصفحات الأصلية تالفة
- بالرسالة صفحات قد تكون مكررة بالرسالة صفحات قد تكون مكررة
 - بالرسالة صفحات قد يكون بها خطأ ترقيم

GEOLOGICAL AND GEOCHEMICAL STUDIES AND ORE POTENTIALITIES OF THE GABAL ELATAWI AREA, EASTERN DESERT, EGYPT

A Thesis

Submitted to the Faculty of Science
Alexandria University

For

The Doctor Philosophy Of Science (Geology)

 $\mathcal{B}y$

Mohamed Abd El Fattah Abd El Sallam Obeid

B.Sc. (1981)

M.Sc. (1990)

Supervised by

Prof. Dr. A. M. El Bouseily

Prof. of Geology Faculty of Science Alexandria University Dr. A. A. Dardir
The Egyptian Geological
Survey and Mining Authority
Cairo

Dr. A. I. Arslan

Ass. Prof. of Geology Faculty of Science Alexandria University Dr. F.H.Mohamed

Ass. Prof. of Geology Faculty of Science Alexandria University Dr. M. M. Tamish

Lecturer of Geology Faculty of Science Alexandria University

ACKNOWLEDGEMENTS

I would like to thank **Prof. Dr. A.M. Abdel Raheim**, Head of the Geology Department, Faculty of Science, Alexandria University for his support and encouragement.

I wish to express my sincere gratitude to Prof. Dr. A.M. El Bouseily, Geology Department, Faculty of Science, Alexandria University. His kind supervision, fatherly patience, liberal assistance, guidance and continuous encouragement during all the steps of this work are greatly acknowledged. I am greatly indebted to Dr. A.A. Dardir, The Egyptian Geological Survey and Mining authority, Cairo for his kind supervision and the facilities offered during the field work.

I am cordially grateful to Ass. Prof. A.I. Arslan, Ass. Prof. F.H. Mohamed and Dr. M. Tamish, Geology Department, Faculty of Science, Alexandria University for their helpful supervision, for their advice on a wide range of matter and for their constructive criticism through reading the manuscript.

Analytical work (XRF) was carried out at the Applied Geochemistry Laboratory, Technical University of Berlin, Germany during a study leave of the writer in Germany (from 15 August to 10 October, 1992). Financial support for this study in Germany was given from the Volkswagen Foundation within the framework of geoscience research cooperation "Geochemical-Tectogenetic Parameters of the Apogranite Province in the Nubian Shield in Egypt" between the Technical University of Berlin/FRG, the Mining University of Freiberg/FRG, Alexandria University/Egypt and the Egyptian Geological Survey and Mining Authority/ Cairo.

I would like to express my sincere thanks to PD. Dr. G. Matheis, Economic Geology Department, Technical University of Berlin, Germany for permitting the writer to use all facilities in the Applied Geochemical Laboratory, Technical University of Berlin and for his useful scientific discussions. Special thanks are due to Prof. Dr. W. Schmidt, Institute of Mineralogy, Geochemistry and Economic Geology, Bergakademie, Freiberg, Germany for his kind guidance and valuable assistance offered during my study leave in Freiberg.

I am deeply indebted to all the staff members of the Geology Department, Alexandria University for facilities and contribution in accomplishment of this study. My deepest gratitudes are also extended to my colleagues at The Egyptian Geological Survey and Mining Authority, Cairo and all who helped me in any way either through discussion or during field work.

CONTENTS

	Paş	ge
LIST	OF TABLES	vi
LIST	OF FIGURES	iii
	CHAPTER I	
1.	INTRODUCTION	1
	CHAPTER II	
2.	GEOLOGICAL SETTING 2.1. Geology of the El Atawi Area 2.2. Previous Work 2.3. Scope of the Present Work	10 15
	CHAPTER III	
3.	FIELD WORK AND LABORATORY TECHNIQUES 3.1. Sampling Procedures 3.2. Sample Treatment 3.3. Mineralogical Analysis 3.3.1. Microscopic Investigations 3.3.2. X-Ray Diffraction Analysis (XRD) 3.3.3. Infrared Spectroscopy (IR) 3.4. Chemical Analyses 3.4.1. X-Ray Fluorescence (XRF) 3.4.2. Wet Chemical Analyses 3.5. Statistical Analyses 3.5.1. Data Treatments	18 21 26 26 27 28 28 28 30
	3.5.2. Statistical Parameters	

	Page
	CHAPTER IV
4.	PETROGRAPHY AND ORE MICROSCOPY 34
	4.1. Petrography
	4.1.1. Serpentinite and Talc-Carbonate Rocks
	4.1.2. Metasediments
	4.1.3. Metavolcanics
	4.1.4. Older Granites
	4.1.5. Hammamat Group 44
	4.1.6. Younger Granites
	4.1.7. Trachytes
	4.2. Ore Microscopy
	4.2.1. Wadi Sitra Chromite Deposit
	4.2.2. El Atawi Copper Mineralization 56
	4.2.3. Panned Concentrates from Proluvial Sediments in
	the El Atawi Area
	CHAPTER V
5.	MINERALOGY AND GEOCHEMISTRY OF THE SERPENTINITES
	AND ASSOCIATED CHROMITE DEPOSIT AT WADI SITRA 60
	5.1. Mineralogy of the Serpentinite Rocks
	5.1.1. X-Ray Diffraction Study
	5.1.2. Infrared (IR) Spectra
	5.2. Geochemistry of the Serpentinites
	5.2.1. Major Element Characteristics
	5.2.2. Trace Element Geochemistry
	5.3. Geochemistry of the Chromite Deposit
	5.3.1. Chemical Characteristics
	5.3.2. Chromite Composition
	5.3.3. Type of Chromite
	5.3.4. Petrogenesis

Page

	CHAPTER VI	
6.	GEOCHEMICAL CHARACTERISTICS OF THE VOLCANIC ROCKS AT THE EL ATAWI AREA 6.1. Geochemistry of the Metavolcanic Rocks 6.1.1. Magma Type 6.1.2. Tectonic Implications 6.1.3. Trace Elements Normalization 6.2. Geochemistry of the Trachyte Rocks 6.2.1. Geochemical Trends 6.2.2. Tectonic Environment 6.2.3. Trace Elements Normalization	92 93 97 101 103 106
	CHAPTER VII	
7.	GEOCHEMICAL AND METALLOGENIC CHARACTERISTICS OF THE GRANITOID ROCKS 7.1. Geochemistry of the Granitoid Rocks 7.1.1. Major Element Geochemistry 7.1.2. Trace Element Geochemistry 7.1.3. Chemical Specialization 7.1.4. Magma Type 7.1.5. Tectonic Implications 7.1.6. Petrogenesis 7.1.7. Trace Elements Normalization 7.2. Post-magmatic Alterations of the El Atawi Specialized Granite 7.2.1. Albitization 7.2.2. Fluoridization	110 111 118 125 131 134 142 145
	CHAPTER VIII	
8.	GEOCHEMICAL PROSPECTING FOR RARE METALS AT THE EL ATAWI AREA 8.1. Panning Survey 8.1.1. Statistical Results 8.1.2. Geochemical Maps	158 158

			Page
	8.2. Regional	Geochemical Survey Using Stream Sediments	. 166
		Distribution Parameters	
		Correlation Coefficients	
		Geochemical Maps	
	8.3 Bedrock	Geochemical Survey	176
		Statistical Parameters	
		Correlation Coefficients	
		Factor Analysis	
		etals Potentiality	
SU	MMARY ANI	CONCLUSIONS	. 198
			211
KE	FERENCES .	••••••••	. 211
AP			. 235
	Appendix 1:	Chemical analyses of major oxide and trace element contents	
		in the Wadi Sitra serpentinite samples, compared with other	
		Egyptian serpentinite rocks	
	Appendix 2:	Major oxides recalculated on a water-free basis and the C.I.P.V	
		norms of the analysed serpentinite samples	. 236
	Appendix 3:	Chemical analyses of the Wadi Sitra chromite samples	. 237
	Appendix 4:	Major oxide and trace element contents in the El Atawi	
		metabasalt samples, compared with similar worldwide rock	
		types	
	Appendix 5:	C.I.P.W. norms and Niggli-values of the metabasalt samples at	
		the El Atawi area	
	Appendix 6:	Chemical compositoin of the trachyte samples at the El Atawi	area
	• •	compared with some Egyptian and worldwide trachyte rocks.	
	Appendix 7:	C.I.P.W. norms and Niggli-values of the trachyte samples at	
	1.	the El Atawi area	. 241
	Appendix 8:	Major oxide and trace element contents in the tonalite and	
		granodiorite samples of Gabal El Shush and Wadi El Miyah .	. 242
	Appendix 9:	Major oxide and trace element contents in the El Atawi granite	
	· · · · · · · · · · · · · · · · · · ·	samples	
	Appendix 10	: Major oxide and trace element contents in the Abu Garadi gra	
	Topponum 10	samples	

5,

	r	age
Appendix 11:	C.I.P.W. norms of the tonalite and granodiorite samples of	
	Gabal El Shush and Wadi El Miyah	246
Appendix 12:	C.I.P.W. norms of the El Atawi granite samples	247
Appendix 13:	C.I.P.W. norms of the Abu Garadi granite samples	249
Appendix 14:	Major oxide (Wt. %) and trace element (ppm) contents in the	
	panned samples at the El Atawi area	250
Appendix 15:	Major oxide (Wt. %) and trace element (ppm) contents in the	
	stream sediment samples at the El Atawi area	251
Appendix 16:	Major oxide(Wt. %) and trace element (ppm) contents in the	
	bedrock samples at Gabal El Atawi area	252
Appendix 17:	Major oxide (Wt. %) and trace element (ppm) contents in the	
	bedrock samples at Gabal Abu Garadi area	254

ARÁBIC SUMMARY

LIST OF TABLES

Pag	ge
Table 1: Classification of the Egyptian basement rocks	2
Table 2: Sampled media, number of samples and sampled materials in	
the study area	9
Table 3: Detection limits of the major oxides (Wt.%) and trace elements	
(ppm) in the analysed samples using the different XRF	_
programmes	
Table 4: Statistical treatments of the measured variables in the data sets 3 Table 5: The d-spacing values (Angstrom) and the relative intensities for	1
the analysed serpentinite samples	8
Table 6: Cation contents per 32 oxygen atoms and some cation ratios for	•
the studied chromite samples (after the method of Stevens, 1944) 79	Q
Table 7: Normative composition of the analysed chromite samples (after	
the method of Stevens, 1944)	1
Table 8: Molecular oxide ratios (R_2O_3 and RO) and normative	
compositions of the analysed chromite samples as proposed by	
Thayer (1946)	2
Table 9: Average chemical composition of the studied granitoids,	
compared with other granitoids	2
Table 10: Recommended values for discrimination between barren and	
rare metal-bearing granitoids	:7
Table 11: Chemical compositions of the fresh and metasomatic granite	
samples of Gabal El Atawi	9
Table 12: Gain and loss values in the major oxides and trace elements	
of the albitized and fluoridized granite varieties of Gabal	
El Atawi	2
Table 13: Statistical parameters of the trace elements in the panned	
samples at the El Atawi area	0
Table 14: Distribution parameters of the trace elements in the stream	
sediment samples at the El Atawi area 16	, 7
Table 15: Correlation coefficient matrix (X 10 ⁻²) for the trace elements	
in the stream sediment samples	70
Table 16: Statistical parameters of the major oxides and trace elements	
in the granite samples at the El Atawi area 17	78
Table 17: Statistical parameters of the major oxides and trace elements	
in the metasediment samples at the El Atawi area 17	79

		Page
Table 18:	Correlation coefficient matrix (X 10 ⁻²) for the major oxides and trace element contents in the granite samples at the	
	El Atawi area	. 182
Table 19:	Correlation coefficient matrix ($X \cdot 10^{-2}$) for the major oxides	
	in the metasediment samples at the El Atawi area	. 183
Table 20:	Correlation coefficient matrix (X 10 ⁻²) for the trace	
	elements in the metasediment samples at the El Atawi area.	. 183
Table 21:	R-mode varimax factor loadings for element contents in the	
	granite samples $(n = 48)$. 186

LIST OF FIGURES

	ra	ıge
Figure	1: A geologic map of Gabal El Atawi area, Central Eastern	
	Desert, Egypt (after Sabet et al., 1975)	11
Figure	2: A drainage map of the El Atawi area showing locations of the	
	panned and stream sediment samples	20
Figure		
	Garadi (A) and El Atawi (B) plutons	22
Figure	4: A location map of the bedrock samples at the El Atawi area	
Figure	5: A location map of the serpentinite and chromite samples at	
	Wadi Sitra	24
Figure	- 11 1	
	Copper Mine Area	25
Figure	7: A photomicrograph showing a bastite texture where antigorite	
	replaces a large pyroxene crystal (C.N., X 50)	36
Figure	8: A photomicrograph showing typical mesh texture, where	
	chrysotile forms the rim and antigorite occupies the mesh	
	core (C.N., X 50)	36
Figure	9: A photomicrograph of quartz crystals exhibit parallel	
	alignment in the graphite schist (C.N., X 100)	39
Figure	10: A photomicrograph of clay minerals cluster along quartz and	
	plagioclase particles in the psammo-pelite (C.N., X 100)	39
rigure	11: A photomicrograph of plagioclase phenocrysts showing	
	combined simple and multiple twinning and exhibit	4.4
E3*	porphyritic texture (C.N., X 50)	41
rigure	12: A photomicrograph of plagioclase crystals showing relict	41
D*	diabasic texture (C.N., X 50)	41
rigure	13: A photomicrograph of quartz grains exhibiting poikilitic	
	texture with biotite in the tonalite rocks of Gabal El Shush	43
Figure .	(C.N., X 25)	43
rigure	14: A photomicrograph of biotite crystals partly altered and interlayered with chlorite in the granodiorite of	
	Wadi El Miyah (C.N., X 25)	13
Figure	15: A photomicrograph of an oligoclase grain showing faint	7.7
riguic	lamellar twinning in the conglomerate (C.N., X 50)	46
Figure	16: A photomicrograph of detrital quartz, feldspar and rock	70
. 19 di C	fragments in the greywacke (C.N., X 50)	46
Figure	17: A photomicrograph showing mesoperthite crystal replaced by	. •
80	sodic plagioclase in the Abu Garadi granite (C.N., X 50)	48
	F-0-1711	

	P	age
Figure	18: A photomicrograph of a strained biotite flake deformed along the cleavage planes in the Abu Garadi granite (C.N., X 50).	. 48
Figure	19: A photomicrograph of secondary albite laths oriented along fractures in the albitized parts of the El Atawi granite pluton	
	(C.N., X 50)	. 50
Figure	20: A photomicrograph of subparallel feldspar crystals forming	c 0
Figure	the characteristic trachytic texture (C.N., X 100) 21: A photomicrograph of an amygdale completely filled with	. 50
rigure	secondary quartz in the trachyte (C.N., X 50)	. 51
Figure	22: A photomicrograph of chromite crystals showing different	
	degrees of fracturing and magmatic corrosion (R.P.L., X 100)	. 53
Figure	23: A photomicrograph of a euhedral chromite crystal encrusted	
_	by a well defined ferrichromite alteration rim (R.P.L., X 100)	. 53
Figure	24: A photomicrograph of a mylonitized chromite crystal traversed	
	by broad and narrow intersecting fractures (R.P.L., X 100)	. 55
Figure	25: A photomicrograph of xenomorphic magnetite crystals show	بد بر
E:	serrate outlines (R.P.L., X 100)	. 55
rigure	26: A photomicrograph of subhedral chalcopyrite crystal with	. 58
Figure	irregular malachite patches (R.P.L., X 200)	. 50
rigure	fractured quartz (R.P.L., X 200)	. 58
Figure	28: A photomicrograph of magnetite crystals rhythmically	
9	replaced by goethite and limonite (R.P.L., X 100)	. 59
Figure	29: A photomicrograph of hematite crystals partly altered to	
	goethite and limonite (R.P.L., X 100)	. 59
Figure	30: A photomicrograph of a columbite crystal containing minute	
	cassiterite inclusions (R.P.L., X 160)	. 62
Figure	31: A photomicrograph showing a subhedral cassiterite crystal	-
E!	(R.P.L., X 160)	. 62
rigure	32: A photomicrograph of a wolframite crystal showing narrow cracks due to mechanical weathering (R.P.L., X 160)	63
Figure	33: A photomicrograph of detrital ilmenite grain showing primary	. 05
I iguic	orthocumulate texture (R.P.L., X 160)	. 63
Figure	34: A photomicrograph of magnetite crystals which are partly	
	martitized along the cleavage planes (R.P.L., X 160)	. 65
Figure	35: A photomicrograph of pyrrhotite crystals with distinctive	
	polarization colours arranged in an isoclinal structure	
	(R.C.N., X 160)	. 65

	r	age
Figure	36: X-ray diffractograms of the Wadi Sitra serpentinite samples	. 67
	37: Infrared spectra of the Wadi Sitra serpentinite rocks	
	38: Nomenclature of the Wadi Sitra serpentinite rocks (after	
_	Streckeisen, 1974)	. 72
Figure	39: Variation of SiO ₂ against FeO _t /(FeO _t +MgO) for the	
-	investigated serpentinites (after Coleman, 1977)	. 72
Figure	40: SiO ₂ -MgO relationship for the studied serpentinite (fields are	
	after Aumento and Loubat, 1971)	. 74
Figure	41: Ni/Co ratio versus Ni contents for the serpentinite samples	
	(delineated fields are after Gulacar and Delalaye, 1976)	. 74
Figure	42: Composition range of the analysed chromite in relation to	
	the compositional range of the Egyptian chromites as	
	delineated by Hanafy (1992)	. 76
Figure	43: Variation of the loss on ignition against SiO ₂ and MgO	
	contents in the Wadi Sitra chromite samples	. 76
Figure	44: Variation of Co/Ni versus FeO/MgO ratios in the chromite	
	samples	. 77
_	45: Relationship between V and TiO ₂ in the studied chromite	. 77
Figure	46: Two projection parts of the spinel prism (A and B) for the	
	studied chromite	. 83
Figure	47: Plot of Cr/(Cr+Al) versus Mg/(Mg+Fe ²⁺) showing the	
	compositional types of the Wadi Sitra chromite(fields are	0.5
T31 -	after Irvine, 1967)	. 85
rigure	48: Variation of Cr/(Cr+Al) versus Mg/(Mg+Fe ²⁺) for the	05
101	studied chromite deposit (after Leblanc and Violette, 1983)	. 85
rigure	49: Ternary Al-Cr-Fe ³⁺ diagram for the chromite samples	. 86
Figure	(fields are after Zhou and Bai,1992)	. 00
rigure	with those of Alpine and Stratiform chromites (fields are	
	after Irvine, 1965)	. 86
Figure	51: Variation of Cr/(Cr+Al) versus Mg/(Mg+Fe ²⁺) for the	
rigure	studied chromite (after Irvine and Findlay,1972)	80
Figure	52: Relationship between TiO ₂ and Fe ²⁺ /Mg in the Wadi Sitra	. 0,
- ienre	chromite deposit (diagram after Dickey,1975)	. 89
Figure	53: Variation of Cr/(Cr+Al) versus Cr/Fe illustrating the	. •,
P	petrogenesis of the Wadi Sitra chromite samples (diagram	
	after Rammlmair et al.,1987)	. 90
	The state of the s	

		rage
Figure	54: Normative composition diagram showing the tectonite level of the studied chromite (diagram after	
	Rammlmair et al., 1987)	. 90
Figure	55: Major elements ternary diagram to recognize the effect of alterations in the analysed metavolcanic samples (after	0.4
T3.	Davis et al., 1978)	. 94
rigure	56: Chemical classification of the metavolcanic rocks at the	0.4
T 7*		. 94
Figure	57: Total alkalies versus SiO ₂ diagram for the metavolcanic	0~
.	samples (fields are after Le Maitre et al., 1989)	. 95
Figure	58: Sr-Zr relationship for the metabasalt rocks (after McCurry	0.5
	and Wright, 1977)	. 95
Figure	59: Zr-Y diagram for the studied metabasalt rocks. The	۰.
	fractionation vectors are after Pearce & Norry (1979)	. 96
Figure	60: Variation of the normative anorthite with CaO contents for	
	the metabasalt rocks	96
Figure	61: Ti-Zr-Y discrimination diagram (Pearce and Cann, 1973) for	
	the metabasalt samples	98
Figure	62: Cr vs. FeOt/MgO diagram for the analysed metabasalts (after	
	Miyashiro and Shido, 1975)	. 98
Figure	63: Ti-Zr variation diagram for the metabasalts at the El Atawi	
	area (diagram after Pearce and Gale, 1977)	99
Figure	64: Zr /Y versus Zr discrimination diagram (Pearce and Norry,	
	1979) for the metabasalt samples	99
Figure	65: Zr-Th-Nb discrimination diagram (Wood, 1980) showing the	
	tectonic setting of the metabasalt rocks	. 100
Figure	66: Plots of Rb/Zr ratio against Nb and Y (Brown et al., 1984)	
	for the metabasalt rocks	. 100
Figure	67: Normalized incompatible trace element patterns of the	
	El Atawi metabasalt rocks using mid-ocean ridge basalt value	s,
	compared with patterns of tholeiitic and calc-alkaline volcanie	C
	arc basalts (after Pearce, 1982)	. 102
Figure	68: Classification of common volcanic rocks using the normative	
-	plagioclase vs. differentiation index (after Barker, 1979)	. 104
Figure	69: SiO ₂ vs. total alkalies as a basis for classification of common	
-	volcanic rocks (after Le Bas et al., 1986)	. 104