

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

Textile/Polymer Composites of Some Protective Properties Prepared by Chemical and Radiation Treatments

Thesis Submitted for the requirements of philosophy Degree (Ph.D.) In Chemistry

By Saleh Nagy El-sayed Saleh

(M.Sc. in Chemistry 2015)

To

Chemistry Department, Faculty of Science, Ain Shams University

Radiation Chemistry Department
National Center for Radiation Research and Technology
Atomic Energy Authority

2022

Textile/Polymer Composites of Some Protective Properties Prepared by Chemical and Radiation Treatments

Thesis Submitted for the requirements of philosophy Degree (Ph.D.) In Chemistry

By Saleh Nagy El-sayed Saleh

(M.Sc. in Chemistry 2015)

To

Chemistry Department, Faculty of Science, Ain Shams University

Thesis advisors

Prof. Dr. Abdel Gawad M. Rabie

Proffesor Emeritus of Chemistry Chemistry Department Faculty of Science Ain Shams University

Prof. Dr. Abdel Wahab M. El-Naggar

Proffesor Emeritus of Radiation Chemistry Radiation Chemistry Department National Center for Radiation Research and Technology Atomic Energy Authority

Prof. Dr. Mahmoud M. Salah El-Din

Professor of Radiation Chemistry Radiation Chemistry Department National Center for Radiation Research and Technology Atomic Energy Authority

APPROVAL SHEET

Title of Ph.D. Thesis:

Cairo University

Textile/Polymer Composites of Some Protective Properties Prepared by Chemical and Radiation Treatments

Name of the candidate: Saleh Nagy El-sayed Saleh

This thesis has been approved by: Prof. Dr. Abdel Gawad M. Rabie **Proffesor Emeritus of Chemistry** Chemistry Department Faculty of Science Ain Shams University Prof. Dr. Abdel Wahab M. El-Naggar Proffesor Emeritus of Radiation Chemistry Radiation Chemistry Department National Center for Radiation Research and Technology **Atomic Energy Authority** Prof. Dr. Magy Kindil Zahran Professor of Organic Chemistry Chemistry Department Faculty of Science Helwan University Prof. Dr. Reham Rashad Mohamed Ali **Professor of Organic Chemistry** Chemistry Department Faculty of Science

> Head of chemistry department Faculty of Science - Ain-Shams University Prof. Dr. Magdy A.M. Ibrahim

ALCHOMET-SACONEYL

Deepest gratitude is owed to *Prof. Dr. Abdel Gawad M. Rabie*, Professor of Organic Chemistry, Faculty of Science Ain-Shams University for sponsoring this thesis, his continuous interest, supervision and comprehensive advice and helpful discussion that made this work possible.

I would like to express my sincere appreciation to *Prof. Dr. Abdel Wahab M. El-Naggar*, Professor of Radiation Chemistry, National Center for Radiation Research and Technology, Atomic Energy Authority for suggesting the topic of this work, continuous supervision, and practical support throughout this study and helpful discussion that made this work possible.

Deep thanks are also due to *Prof. Dr. Mahmoud M. Salah El-Din*, Professor of Radiation Chemistry, National Center for Radiation Research and Technology, Atomic Energy Authority for his supervision, encouragement and guidance through this thesis.

Deep thanks are also due to *Dr. Nisreen M. Ali* for her supervision, encouragement and guidance through this thesis

Deep thanks are also due to *Dr. Mervat M. Khaffaga* for her supervision, encouragement through this thesis

Deep thanks are also due to *Dr. Magdy A. Ali for* his supervision, encouragement through this thesis

I would like to thank my colleagues in the *Radiation Chemistry Department*, *National center for Radiation Research, and Technology, Atomic Energy Authority* for their cooperation. Special acknowledgments go to my parents, brothers, relatives, and friends for their unconditional support.

Finally yet importantly, I am indebted for the unconditional support and encouragement provided by my family members and friends.

Aim of the Work

Aim of the Work

In the present work, copper/chitosan nanocomposites (Cu/CS) were prepared in an aqueous solution in the presence of CS as stabilizer and CuSO₄·5H₂O precursor. The Cu/CS NPs formation was proved through transmission electron microscopy (TEM), Dynamic light scattering (DLS), Fourier Transform infrared (FT-IR) spectroscopy and XRD diffraction. Cotton and cotton/polyester fabrics were gamma-radiation grafted by padding to pickup of 100%, in nanocomposites based on Cu/CS NPs loaded in polymer blends of poly(vinyl alcohol) (PVA) and plasticized starch (PLST). The grafted fabrics were characterized in terms of tensile mechanical, crease recovery and water absorption properties. The results showed that cotton fabrics displayed higher water absorption (%) than cotton/polyester fabrics for all PVA/PLST compositions and water absorption was found to decrease with increasing the ratio of PVA in the PVA/PLST blends. Cotton/polyester fabrics displays crease recovery angle (CRA) value of 147.6 upon treated with PVA/PLST (80/20%) and gamma irradiated to 30 kGy compared to CRA value of 125.0 for cotton fabrics treated under the same conditions. For cotton fabrics, the tensile strength was largely depends on the irradiation dose, in which the tensile strength of the treated fabric with the different formulations is higher than the untreated fabric. The antimicrobial activity of the fabrics against gram-positive bacteria (Staphylococcus aurous) and gram-negative bacteria (Escherichia coli) was investigated. In case of gram-positive bacteria cotton fabric showed the highest impact, for both 50/50 and 20/80 PVA/PLST of 14 and 14.5 mm inhibition zone, whilst, cotton/polyester fabric recorded 6 and 5 mm inhibition zone against gram-negative bacteria for 50/50 and 20/80 PVA/PLST, respectively.

The main objective of this work is to impart flame retardancy finishes to cotton and cotton/polyester fabrics by gamma-radiation grafting of composites based on poly(vinyl alcohol)/plasticized starch loaded with aluminum and phosphorus metals. The results indicated that the grafting of cotton or cotton/PET fabrics and loaded with aluminum and phosphorous metals enhanced water absorption (%), crease recovery and tensile mechanical properties. The flammability test in terms of time to catch fire (T_F), time after glowing (T_G) and weight left (W_L) showed that the grafted fabric displayed improved flammability than untreated fabrics. Grafted cotton fabric showed

Aim of the Work

higher stability against fire, versus the blend fabric for both Al ad Ph treatments. The Ph-treated fabric manifested high char formation on the surface of the fabric that suppressed the ignition of samples over that of Al-treated ones. Both Al ad Ph metal proved to satisfy the highest flame retardancy with minimum weight lose percent. The main objective of this work is to impart UV protection properties to cotton, and cotton/polyester fabrics and enhancing the original chemical and physical properties. In this procedure, the fabrics were treated by coating with nanocomposites based on poly(vinyl alcohol)/plasticized starch (PVA/PLST) blends and Zn NPs. The coated fabrics were then exposed to gamma radiation to induce crosslinked hybrid structure. The formation of Zn NPs was confirmed by UV/vis absorption and XRD patterns measurements, whereas the treated fabrics were characterized by water absorption, crease recovery, thermal stability, surface morphology and tensile mechanical measurements. The results indicated that the treated fabrics showed highly reducing UV-A, UV-B and ultraviolet protection factor (UPF), particularly with increasing irradiation dose, regardless of fabric kind. It was found that cotton and cotton/PET fabrics coated with PVA/PLST/Zn NPs nanocomposites irradiated to a dose of 30 kGy displayed UPF excellent rating values of 44.31 and 58.23, respectively.

Contents

Table of Contents

			Page
List	of Figur	es	6
List	of Table	S	11
List	of schen	nes	12
List	of Abbr	eviations	13
		Chapter I (Introduction)	
1.1.	Radiat	ion Processing	14
	1.1.1.	Radiation processing versus chemical initiation	14
	1.1.2.	Radiation crosslinking and degradation of polymers	16
	1.1.3	Effect of Ionizing Radiation on Polymeric Materials	19
1.2.	Textile	Fabrics	21
	1.2.1.	Cotton Fabrics	21
	1.2.2.	Cotton/Polyester Blend Fabrics	23
	1.2.3	Poly(vinyl alcohol)	24
		Chapter II (Literature Review)	
2.1.	Antim	icrobial Finishing of Textile Fabrics	26
	2.1.1.	Antimicrobial Mechanism of Bactria	26
	2.1.2.	Importance of Antimicrobial Finishing of Textiles	28
	2.1.3.	Antimicrobial Properties of Textile Fabrics	28
	2.1.4.	Antimicrobial activity of chitosan composites	33
	2.1.5.	Antimicrobial activity of nanoparticles	36
	2.1.6.	Antimicrobial activity of copper/chitosan nanocomposites	41
2.2.	Flame	Retardancy Finishing of Textile Fabrics	47
	2.2.1.	Importance of fire and flame retardant fabrics	47
	2.2.2.	Chemistry of flame retardant additives	49
	2.2.3.	Flame retardancy Properties of Textile fabrics	50
	2.2.4.	Flame retardancy of cotton and cotton/polyester fabrics	56
2.3.	Ultrav	iolet Protection Finishing of Textile Fabrics	59
	2.3.1.	Effect of Ultraviolet Types on Human Health	59
	2.3.2.	UV protection by Chemical Reagents	60
	2.3.3.	UV Protection of Textile Fabrics	61
	2.3.4.	UV Protection by Zinc Nanoparticles	69
		Chapter III	
		Metaviele Methodo and Measurements	
		Materials, Methods and Measurements	
3.1.	Mater	ials	72
	2.1.1.	Textile Fabrics	72
	2.1.2.	Chemicals and reagents	72
3.2.	Metho	ds and Procedures	72
	3.2.1.	Gamma irradiation	72
	3.2.2.	Preparation of copper/chitosan (Cu/CS) nanocomposites	72
	3.2.3.	Preparation of plasticized starch (PLST)	73
	3.2.4.	Gamma radiation graft copolymerization of cotton and	73
		cotton/polyester fabrics	
	3.2.5.	Gamma radiation graft copolymerization of cotton and	74

Contents

		cotton/polyester fabrics in the presence of aluminum and	
		phosphorous metals	
	3.2.6.	Preparation of zinc nanoparticles	74
	3.2.7.	Coating of cotton and cotton/polyester fabrics with	75
		[(PVA/PLST)/ZnO NPs] nanocomposites under the effect	
		of gamma radiation	
3.3.	Measure	ements and Analysis	75
	3.3.1.	Transmission electron microscopy (TEM)	75
	2.3.2.	FT-IR spectroscopy	75
	2.3.3.	XRD diffraction	75
	2.3.4.	UV-vis absorption	75
	2.3.5.	Water absorption (%)	76
	2.3.6.	Crease recovery properties	76
	2.3.7.	Tensile mechanical properties	76
	2.3.8.	Scanning electron microscopy (SEM)	76
	2.3.9.	Thermogravimetric analysis (TGA)	76
	2.3.10.	Antimicrobial activity evaluation	77
	2.3.11.	Fire retardancy evaluation	77
	2.3.11.	Formation of ZnO nanoparticles	77
	2.3.12.	UV protection evaluation	77
		Chapter IV	
		Results and Discussion	
4.1.	Antimici	robial activity of cotton and cotton/polyester fabrics finished	79
		ng with hybrid structure of copper/chitosan nanocomposites	
	loaded in	n polymer blends followed by gamma irradiation	
	4.1.1.	Gamma Radiation Graft Copolymerization of Cotton and	79
		Cotton/Polyester Fabrics	
	4.1.2.	Characterization of Cu/CS Nanocomposites	80
		4.1.2.1. Transmission Electron Microscopy (TEM	80
		4.1.2.2. FT-IR Spectroscopy	81
		4.1.2.3. XRD Diffraction	81
	4.1.3.	Technical Properties of Cotton and Cotton/Polyester	83
		Fabrics Treated with Nanocomposites Based on Cu/CS	
		Loaded in PVA/PLST Blends	
		4.1.3.1. Water Absorption (%)	83
		4.1.3.2. Crease Recovery Properties	85
		4.1.3.3. Tensile Mechanical Properties	87
		4.1.3.4. Scanning Electron Microscopy (SEM)	90
		4.1.3.5. Thermogravimetric Analysis (TGA)	91
		3.1.3.6. Antimicrobial Activity Evaluation	94
4.2.		Flame Retardancy of Gamma-Radiation Grafted Cotton and	101
	Cottor	/Polyester Fabrics Loaded With Aluminum and Phosphorus	
		Metals	
	4.2.1.	Water Absorption (%)	102
	4.2.2.	Crease Recovery Properties	107
	4.2.3.	Tensile Mechanical Properties	109
	4.2.4.	Scanning Electron Microscopy (SEM)	113
	4.2.5.	Thermogravimetric Analysis (TGA)	116

Contents

	4.2.6.	Fire Retardancy Evaluation	122
4.3.	UV prot	ection of cotton and cotton/polyester blend fabrics coated	130
	with PV	A/PLST/ZnO NPs nanocomposites under the effect of	
	gamma	irradiation	
	4.3.1.	Confirmation of ZnO Nanoparticles	130
	4.3.2.	Coating of Fabrics under the Effect of Gamma Irradiation	131
	4.3.3.	FT-IR Analysis	132
	4.3.4.	Water Absorption	134
	4.3.5.	Crease Recovery	135
	4.3.6.	Tensile Mechanical Properties	137
	4.3.7.	Surface Morphology	139
	4.3.8.	Thermogravimetric Analysis (TGA)	141
	4.3.9.	UV Protection Characters	144
Con	clusions		149
Refe	rences		152
Sum	Summary		167
Aral	bic Summ	ary	176
Publ	lications		181

	Chapter III-Part 1	
No.	Title	Page
[1]	Finishing of cotton and cotton/polyester fabrics treated by padding	80
	in nanocomposite containing Cu/CS (NPs) / PVA/PLST followed by	
	gamma irradiation.	
[2]	Characterization of Cu/CS nanocomposites: (A) TEM images, (B)	82
	FTIR spectra (C) XRD patterns and (D) UV absorption spectra.	
[3]	Water absorption (%) against time of cotton fabrics treated by	84
	coating with nanocomposite formulations containing a constant	
	content of Cu/CS nanoparticles (10%) loaded in different ratios of	
F 43	PVA/PLST and subjected to gamma irradiation at a dose of 30 kGy.	0.5
[4]	Water absorption (%) of cotton/PET blend fabrics treated by	85
	coating with nanocomposite formulations containing a constant	
	content of Cu/CS nanoparticles (10%) loaded in different ratios of	
r=1	PVA/PLST and subjected to gamma irradiation at a dose of 30 kGy.	0.6
[5]	Crease recovery angles of cotton fabrics treated by coating with	86
	nanocomposites containing a constant content of Cu/CS	
	nanoparticles (10%) loaded in different ratios of PVA/PLST and	
[(1	subjected to gamma irradiation at a dose of 30 kGy.	0.7
[6]	Crease recovery angles of d cotton/PET blend fabrics treated by	87
	coating with nanocomposites containing a constant content of	
	Cu/CS nanoparticles (10%) loaded in different ratios of PVA/PLST	
[7]	and subjected to gamma irradiation at a dose of 30 kGy.	90
[7]	Effect of irradiation dose on the tensile strength of cotton fabrics	89
	treated by padding in nanocomposite containing Cu/CS	
	nanoparticles loaded in PVA/PLST (80/20%) blends. The content of	
ro1	Cu/CS nanoparticles was kept constant at 10%. Effect of irradiation dose on the elongation at break (%) of cotton	89
[8]	fabrics treated by padding in nanocomposite containing Cu/CS	09
	nanoparticles loaded in PVA/PLST (80/20%) blends. The content of	
	Cu/CS nanoparticles was kept constant at 10%.	
[9]	Effect of irradiation dose on the tensile strength of cotton/PET	90
[2]	fabrics treated by padding in nanocomposite containing Cu/CS	<i>9</i> 0
	nanoparticles loaded in PVA/PLST (80/20%) blends. The content of	
	Cu/CS nanoparticles was kept constant at 10%.	
[10]	Effect of irradiation dose on the elongation at break (%) of	90
[IV]	cotton/PET fabrics treated by padding in nanocomposite containing	70
	Cu/CS nanoparticles loaded in PVA/PLST (80/20%) blends. The	
	content of Cu/CS nanoparticles was kept constant at 10%.	
[11]	SEM micrographs of cotton and cotton/polyester fabrics before and	91
[-*]	after treatments by coating with nanocomposites based on Cu/CS	
	loaded in (PVA/PLST (80/20%): The concentration of Cu/CS was	
	fixed at 10% and the treated fabrics were gamma irradiated at	
	fixed dose 30 kGy.	
[12]	TGA thermograms and the corresponding rate of thermal	94
	decomposition reaction curves of cotton fabrics before and after	

	treatment with nanocomposites based on Cu/CS loaded in different compositions of PVA/PLST polymer blends and gamma irradiated	
	to a dose of 30 kGy. The concentration of Cu/CS nanocomposites	
[12]	was kept constant at 10%.	0.4
[13]	TGA thermograms and the corresponding rate of thermal	94
	decomposition reaction curves of cotton/polyester fabrics before	
	and after they had been treated under the same conditions as in Fig.12.	
[14]	Inhibition zones against Gram +ve Bactria on untreated and treated	98
	cotton fabrics with different compositions of PVA/PLST blends and	
	exposed to different doses of gamma irradiation.	
[15]	Inhibition zones against Gram +ve Bactria on untreated and treated	99
	cotton/polyester blend fabric samples with different compositions of	
	PVA/PLST blends and exposed to different doses of gamma	
	irradiation.	
[16]	Inhibition zones against Gram -ve Bactria on untreated and treated	100
	cotton fabric samples with different compositions of PVA/PLST	
	blends and exposed to different doses of gamma irradiation.	
[17]	Inhibition zones against Gram -ve Bactria on untreated and treated	101
	cotton/polyester blend fabric samples with different compositions of	
	PVA/PLST blends and exposed to different doses of gamma	
	irradiation.	
	Chapter III-Part 2	
[18]	Scheme showing the treatment of cotton and cotton/polyester	102
	fabrics, by padding in with composites based on PLST/PVA	
	(80/20%) blends containing different contents of aluminum and	
	phosphorus.	
[19]	Water absorption of of cotton fabrics treated by padding in	104
	composites based on PLST/PVA (80/20%) blends and containing	
	different contents of aluminum sulphate and mono sodium dihydro	
	phosphate and then exposed to a dose of 30 kGy of gamma	
[20]	radiation.	105
[20]	Water absorption of cotton/PET blend fabrics treated by padding in	105
	composites based on PLST/PVA (80/20%) blends and containing	
	different contents of aluminum sulphate and mono sodium dihydro	
	phosphate and then exposed to a dose of 30 kGy of gamma radiation.	
[21]	Plots of (ln F) against (ln t) for the absorption in water at room	106
[41]	temperature of cotton fabrics treated treated by padding in	100
	composites based on PLST/PVA (80/20%) blends and containing	
	different contents of aluminum sulphate and mono sodium dihydro	
	phosphate and then exposed to a dose of 30 kGy of gamma	
	radiation.	
[22]	Plots of (ln F) against (ln t) for the absorption in water at room	107
	temperature of cotton/PET blend fabrics treated by padding in	_~,
	composites based on PLST/PVA (80/20%) blends and containing	
	different contents of aluminum sulphate and mono sodium dihydro	
	phosphate and then exposed to a dose of 30 kGy of gamma	
	radiation.	
	Crease recovery angles of cotton fabrics treated by padding in	109

	composites based on PLST/PVA (80/20%) blends and containing	
	different contents of aluminum sulphate and mono sodium dihydro	
	phosphate and then exposed to different doses of gamma radiation.	
[24]	Crease recovery angles of cotton and cotton/PET blend fabrics	110
	treated by padding in composites based on PLST/PVA (80/20%)	
	blends and containing different contents of aluminum sulphate and	
	mono sodium dihydro phosphate and then exposed to different	
	doses of gamma radiation.	
[25]	Tensile strength (TS) and elongation at break (EB) of cotton fabrics	112
[treated by grafting with composites based on PLST/PVA (80/20%)	
	blends and containing different contents of Al. The grafting was	
	carried out at different doses of gamma radiation.	
[26]	Tensile strength (TS) and elongation at break (EB) of cotton fabrics	113
[20]	treated by grafting with composites based on PLST/PVA (80/20%)	113
	blends and containing different contents of Ph. The grafting was	
[AF]	carried out at different doses of gamma radiation.	114
[27]	Tensile strength (TS) and elongation at break (EB) of cotton/PET	114
	fabrics treated by grafting with composites based on PLST/PVA	
	(80/20%) blends and containing different contents of Al. The	
	grafting was carried out at different doses of gamma radiation.	
[28]	Tensile strength (TS) and elongation at break (EB) of cotton/PET	115
	fabrics treated by grafting with composites based on PLST/PVA	
	(80/20%) blends and containing different contents of Ph. The	
	grafting was carried out at different doses of gamma radiation.	
[29]	SEM micrographs of cotton fabrics treated by grafting with	117
	composites based on PLST/PVA (80/20%) blends and containing	
	different contents of Al and Ph. The grafting was carried out at a	
	dose of 30 kGy.	
[30]	SEM micrographs of cotton/PET fabrics treated by grafting with	118
[]	composites based on PLST/PVA (80/20%) blends and containing	
	different contents of Al and Ph. The grafting was carried out at a	
	dose of 30 kGy.	
[31]	TGA thermograms and the corresponding rate of thermal	120
	decomposition reaction of cotton fabrics treated by padding in	120
	composition reaction of cotton fabrics treated by patting in composites based on PLST/PVA (80/20%) blends and containing	
	different contents of aluminum and then exposed to a dose of 30	
F221	kGy of gamma radiation.	101
[32]	TGA thermograms and the corresponding rate of thermal	121
	decomposition of cotton fabrics treated by padding in composites	
	based on PLST/PVA (80/20%) blends and containing different	
	contents of phosphorous and then exposed to a dose of 30 kGy of	
	gamma radiation	
[33]	TGA thermograms and the corresponding rate of thermal	122
	decomposition reaction of cotton/PET fabrics treated by padding in	
	composites based on PLST/PVA (80/20%) blends and containing	
	different contents of aluminum and then exposed to a dose of 30	
	kGy of gamma radiation.	
[34]	TGA thermograms and the corresponding rate of thermal	123
	decomposition reaction of cotton/PET fabrics treated by padding in	
	composites based on PLST/PVA (80/20%) blends and containing	

	different contents of phosphorous and then exposed to a dose of 30 kGy of gamma radiation.	
[35]	Photographs of cotton fabrics before and after gamma- radiation	127
[00]	grafting with PVA/PLST blends containing different contents of Al	12,
	metal at a constant dose of 30 kGy, and subjected to flammability	
	test.	
[36]	Photographs of cotton fabrics before and after gamma- radiation	128
[30]	grafting with PVA/PLST blends containing different contents of Ph	120
	metal at a constant dose of 30 kGy and subjected to flammability	
[25]	test.	120
[37]	Photographs of cotton/PET fabrics before and after gamma-	129
	radiation grafting with PVA/PLST blends containing different	
	contents of Al metal at a constant dose of 30 kGy, and subjected to	
	flammability test.	
[38]	Photographs of cotton/PET fabrics before and after gamma-	130
	radiation grafting with PVA/PLST blends containing different	
	contents of Ph metals at a constant dose of 30 kGy, and subjected to	
	flammability test.	
	Chapter III-Part 3	
[39]	Zn nanoparticles :(a) XRD pattern and (b) UV/vis absorption. In	134
	Fig.1 (b), the peaks (1-7) are assigned to the diffractions of various	
	planes corresponding to hexagonal packed structure of zinc oxide,	
	(100), (002), (101), (102), (110), (103) and (200), respectively	
[40]	FT-IR spectra of cotton fabrics treated by coating with PVA/PLST	136
	blends containing a constant content (5%) of zinc oxide	
	nanoparticles under the effect of different doses of gamma	
	irradiation.	
[41]	FT-IR spectra of cotton/polyester (C/PET) blend fabrics treated by	137
	coating with PVA/PLST blends containing a constant content (5%)	
	of zinc oxide nanoparticles under the effect of different doses of	
	gamma irradiation.	
[42]	Water absorption of cotton and cotton/PET fabrics treated by	139
	coating with PVA/PLST (80/20%) blends containing a constant	
	content of 5% of zinc oxide nanoparticles under the effect of	
	different doses of gamma irradiation.	
[43]	Crease recovery angle (CRA) of cotton and cotton/polyester	140
	(C/PET) blend fabrics treated by coating with PVA/PLST (80/20%)	
	blends containing zinc oxide nanoparticles (5%) under the effect of	
	different doses of gamma irradiation.	
[44]	Tensile strength and elongation at break of cotton fabrics treated	141
r1	with nanocomposite containing PVA/PLST (80/20%) and a constant	
	content (5%) of ZnO nanoparticles, before and after exposed to	
	different doses of gamma irradiation.	
[45]	Tensile strength and elongation at break of cotton/PET fabrics	142
[]	treated with nanocomposite containing PVA/PLST (80/20%) and a	
	constant content (5%) of ZnO nanoparticles, before and after	
	exposed to different doses of gamma irradiation.	
[46]	SEM micrographs of cotton and cotton/PET fabrics treated by	142
[40]	coating with PVA/PLST (80/20%) blends containing a constant	174
	content (5%) of zinc oxide nanoparticles under the effect of	
	content (5/0) of zinc oxide nanoparticles under the effect of	<u> </u>

nermal 144
nermal 144
h
d a constant
exposed to
nermal 145
d with
d a constant
exposed to
ocomposite 149
ant content
d to different
reated with 150
%) and a
and after
r <u> </u>