

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

Faculty of Women for Arts, Science and Education

Biochemistry and Nutrition Department

Effect of Grape Seeds (Vitis vinifera L.) and Mandarin Peels (Citrus reticulate L.) Extracts on the Cardiotoxicity Induced by Cyclophosphamide in Rats

Thesis

Submitted to Faculty of Women
Ain Shams University in Partial Fulfillment for
Master degree in science (M.Sc.) in Biochemistry and Nutrition

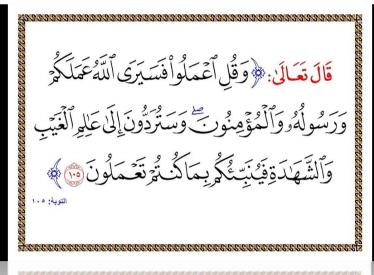
By Hanan Kamal Mohamed Abd-Elaal

B.Sc. of Science Biochemistry and Nutrition. Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education Ain Shams University

Supervisors

Prof.Dr. Hanaa Mostafa Abd El -Fattah

Professor of Nutrition, Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education Ain Shams University


Prof.Dr.Heba Adel Barakat

Professor of Biochemistry and Nutrition, Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education Ain Shams University

Dr.Sahar Mousa Galal

Lecturer of Biochemistry and Nutrition, Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education Ain Shams University

(2022)

Acknowledgement

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I would like to express my deepest gratitude to **Prof. Dr. Hanaa**Mostafa Abd El-Fattah Professor of Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University. I had the honor to proceed this work under her instructive supervision and guidance to enrich my study with her experience and knowledge throughout the steps of this work. The office door was always open whenever I ran into a trouble spot or had a question about my research or writing. She consistently allowed this paper to be my own work, but steered me in the right direction whenever she thought I needed it.

I would also like to express my gratefulness towards my guide **Prof.Dr.Heba Adel Barakat** Professor of Biochemistry and Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University, who is excellent guidance and dedicated efforts made me think upon and understand a number of problems and solve them sincerely, her keen interest and encouragement serves as a constant support and inspiration during the period of work.

I would also like to a knowledge **Dr.Sahar Mousa Galal**, Lecturer of Biochemistry and Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University, I am gratefully indebeted for her very valuable comments on this thesis and for her supervision of the practical part of the experiment and her continuous support.

I am grateful to **Prof. Dr. Kawkab A. Ahmed,** Professor of Pathology Department, Faculty of Veterinary Medicine, Cairo University, for her help in microscopic examination of heart and liver sections and her continuous friendly help any time.

Dedication

This work is dedicated for my parents who have raised me to be the person I am today. My "father" did not only raise and nurture me but also taxed himself dearly over the years for my education and intellectual development. My "mother" has been a source of motivation and strength during all hard moments. Thanks for their love, guidance and support that you have always given me.

Also, I dedicated this work for my family and family of my husband. They are the driving force in my life and career, without their love none of this would matter, throught my life they have actively supported me in my determination to find and realize my potential and to make this contribution to our world.

Last but not at least, with great pleasure, I would like to express my sincere gratitude to my husband "Mostafa Sami Sallam El-Sahar" whose help, support and encourage me all the time. Also I'd like to express my love to my girl (Rawan) and my son (Sami).

Abstract

Effect of Grape Seeds (Vitis vinifera L.) and Mandarin Peels (Citrus reticulate L.) Extracts on the Cardiotoxicity Induced by Cyclophosphamide in Rats. Hanan Kamal Mohamed, MSc. degree, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University.

The current study was developed to investigate the influence of grape seeds (GS) and mandarin peels (MP) extracts as a powerful antioxidants on the cardiotoxicity induced by cyclophosphamide (CP) in rats. Sixty adult male Sprague-Dawley rats were divided into 6 groups. Group (1) (Control group): Rats were received distilled water (2.5 ml / kg BW) daily by oral intubation for 6 weeks and injected intraperitoneally (i.p) with saline (0.9 %) as single dose at the end of the sixth week of the experiment. Group (2): Rats were received distilled water and injected with single dose of cyclophosphamide which dissolved in saline (200 mg/kg BW. i.p.) at the end of the sixth week of the experiment. Groups (3 and 4): Rats were received grape seeds extracts low and high doses (150 and 300 mg/kg BW), respectively daily by oral intubation for 6 weeks then injected with cyclophosphamide as group 2. Groups (5 and 6): Rats were received mandarin peels extracts low and high doses (150 and 300 mg/kg BW), respectively daily for 6 weeks then injected with cyclophosphamide as group 2. The results of this study documented that CP caused a significant increase in serum alanine aminotransferase (ALT), aminotransferase (AST), alkaline phosphatase (ALK-P), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), creatine kinase (CK) enzymes activities and serum malondialdehyde (MDA) level. While total antioxidant capacity level (TAC) showed a significant decrease. On the other hand cardiac catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and cardiac β cell lymphoma-2 (Bcl-2) level showed a significant decrease in CP intoxicated group while cardiac p53, caspase-3 and DNA fragmentation levels showed a significant increase in CP intoxicated group. Also, some histopathological changes were observed in liver and heart tissues in CP group. Oral administration of GS and MP caused an ameliorative effect in oxidative and apoptotic biomarkers, liver and heart function enzymes activities with an improvement of histopathological changes in liver and heart tissues. Conclusion: Our data proved that the protective effect of grape seeds and mandarin peels in cyclophosphamide intoxicated group may be due to their anti-inflammatory antioxidant. and antiapoptotic properties.

List of Abbreviations

Abbreviation	Meaning
AAF	Acetylaminofluorene
ADP	Adenosine di phosphate
ALT	Alanine aminotransferase
ADH	Alcohol dehydrogenase.
ALDH	Aldehyde dehydrogenase
ALK-P	Alkaline phosphatase
AST	Aspartate aminotransferase
ATP	Adenosine tri phosphate
BAD	Bcl ₂ Associated death promotor
BAX	Bcl ₂ Associated X protein
Bcl-2	B Cell lymphoma-2
CAT	Catalase
CCL4	Carbon tetrachloride
CE	Catechin equivalent
CYC	Cytochrome C
CK	Creatine kinase
CK-MB	Creatine kinase-MB
СР	Cyclophosphamide
CPE	Citrus peel extract
CRP	C-reactive protein

List of abbreviations

CVDs	Cardiovascular diseases
CYP-450	Cytochrome P450
DEN	Diethylnitrosamine
DNA	Deoxyribonucleic acid
DOX	Doxorubicin
ECs	Endothelial cells
ELIZA	Enzyme linked immunesorbent assay
eNOS	Endothelial nitric oxide synthase
FER	Feed efficiency ratio
G6PDH	Glucose-6-phosphate dehydrogenase
GAE	Gallic acid equivalent
GP _X	Glutathione peroxidase
GR	Glutathione reductase
GS	Grape seeds
GSE	Grape seed extract
GSH	Reduced glutathione
GSPE	Grape seed procyanidin extract
GST	Glutathione S-transferase
HDL-C	High-density lipoprotein cholesterol
HDN	Hesperidin
НК	Hexokinase
HPLC	High performance liquid chromatography
HRP	Horse radish peroxidase

List of abbreviations

i.p.	Intraperitoneally
I/R	Ischemic- reperfusion
IL-6	Interleukin-6
ISO	Isoproterenol
JNKs	c-Jun N-terminal kinases
LDH	Lactate dehydrogenase
LDL-C	Low- density lipoprotein cholesterol
LPO	Lipid peroxidation
MAPK	Mitogen activated protein-kinase
MDA-LDL	Malondialdehyde modified LDL
MG	Methyl gallate
MI	Myocardial infarction
MP	Mandarin peels
MPE	Mandarin peels extracts
NAD	Nicitonamide adenosine di phosphate
+NADP	Nicotinamide adenine dinucleotide phosphate
NADH	Reduced nicotinamide adenine dinucleotide
NADPH	Reduced nicotinamide adenine dinucleotide phosphate
NF-kB	Nuclear factor-kB
NG	Naringin
NOS	Nitric oxide synthase
ONOO-	Peroxynitrites
Ox-LDL	Oxidized- LDL

List of abbreviations

PARP-1	Poly (ADP-ribose) polymerase-1
PBS	Phosphate buffer solution
PI3K	Phosphoinositide 3-kinase
PMFs	Polymethoxy flavones
PP	Phenoxyl radical
RE	Rutin equivalents
RNS	Reactive nitrogen species
ROO·	Peroxyl radical
ROOH	Hydroperoxide
ROS	Reactive oxygen species
SOD	Superoxide dismutase
STZ	Streptozotocin
TAC	Total antioxidant capacity
TC	Total cholesterol
TFC	Total flavonoid content
TLR-4	Toll-like receptor-4
TNF-α	Tumor necrosis factor-α
TPC	Total phenolic content
TPP	Total polyphenols
VSMCs	Vascular smooth muscle cells
WAT	White adipose tissue