

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

ملاحظات: لا يوجد

EFFECT OF SOME DIETARY ADDITIVES ON PERFORMANCE OF BROILERS UNDER HOT WEATHER CONDITIONS

By

Fatma Abd -Elsalam Abd-Elsalam Mohamed

B.Sc. Agric. Sci. (Soil Sciences), Fac. Agric., Cairo Univ., 2002 M.Sc. Agric. Sci. (Soil Sciences), Fac. Agric., Cairo Univ., 2016

> A Thesis Submitted in Partial Fulfillment Of The Requirements for the Degree of

in Agricultural Sciences (Poultry Nutrition)

Department of Poultry Production Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF SOME DIETARY ADDITIVES ON PERFORMANCE OF BROILERS UNDER HOT WEATHER CONDITIONS

By

Fatma Abd -Elsalam Abd-Elsalam Mohamed

B.Sc. Agric. Sci. (Soil Sciences), Fac. Agric., Cairo Univ., 2002 M.Sc. Agric. Sci.(Soil Sciences), Fac. Agric., Cairo Univ., 2016

This thesis for Ph D. Sc. degree has been approved by:	
Dr. Mohamed Ahmed Fouad El-Manylawi Prof. of Poultry Nutrition, Faculty of Agriculture, Cairo Universit	
Dr. Nabil Mohammed Hassan El-Medany	
Dr. Yousry Mohamed Ahmed El-Hommosany Prof. Emeritus of Poultry Physiology, Faculty of Agriculture, A Shams University.	
Dr. Fathy Abdel-Azeem Mohamed Prof. Poultry Nutrition and Head of The Poultry Production Department, Faculty of Agriculture, Ain Shams University.	

Date of Examination: 1/8/2022

EFFECT OF SOME DIETARY ADDITIVES ON PERFORMANCE OF BROILERS UNDER HOT WEATHER CONDITIONS

By

Fatma Abd -Elsalam Abd-Elsalam Mohamed

B.Sc. Agric. Sci. (Soil Sciences), Fac. Agric., Cairo Univ., 2002 M.Sc. Agric. Sci. (Soil Sciences), Fac. Agric., Cairo Univ., 2016

Under the supervision of:

Dr. Fathy Abdel-Azeem Mohamed

Prof. Poultry Nutrition and Head of The Poultry Production Department, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Yousry Mohamed Ahmed El-Hommosany

Prof. of Poultry Physiology, Faculty of Agriculture, Ain Shams University.

Dr. Hady Fathy Abbas Motawe

Head Research of Poultry Nutrition, Regional Center for Food and Feed, Agricultural Research Center.

ABSTRACT

Fatma Abd-Elsalam Mohamed: Effect of Some Dietary Additives on Performance of Broilers under Hot Weather Conditions. Unpublished Ph.D. Dissertation, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, 2022.

This study was carried out to evaluate the impact of ginger, peppermint powder to broiler chicks' diets either singularly or in combinations and vitamin C on performance in broiler chicks under conditions of heat.

A total of 320 d-old broiler chicks (Cobb-500) with an average body weight of 48.0±2g were distributed by weight to eight equal groups. The first group (T1) was fed on a basal diet. Ginger roots powder was added with was basal diet at 0.25% and 0.5% (T2 and T3 groups), peppermint leaves powder was added with basal diet at 0.25% (T4) and 0.5% (T5), both ginger and peppermint at levels of 0.125% (T6) and 0.25% (T7) groups, respectively, and 300 mg/kg diet vitamin C with basal diet (T8) group.

Results showed that live body weight, body weight gain were significantly affected among experimental groups compared to the control group. The highest live body weight and body weight gain were recorded in group supplemented T7, and lowest values were found in control group. Feed consumption and feed conversion ratio were significantly improved in all treatment groups compared with control group. Carcass traits were high significantly in the percentages of the body weight, liver, spleen, heart and lowest abdominal fat in all the treated groups. Different dietary supplementations were significantly increased in serum total protein, albumin, and globulin. As well A/G ratio. The highest level of total protein was noted in groups T2, T3 and T5 while the lowest value was reputed for control one. Serum tri-glycerides, cholesterols and low density lipo-proteins (LDL) levels were significantly decreased in

experimental groups compared to control group. HDL or LDL were significantly difference between all treatments under the condition of this study. The highest levels of HDL recoded by T2 but, the lowest level of LDL reported by T5.

Hemolysatic malondialdehyde was significantly decreased, while catalase activities were significantly increased in all experimental groups.

Amylase or protease significantly increased in chicks fed supplemented with different fed additives compared to chicks of control. Cecum total plate count, *E. coli*, and *fecal coli*, count was decreased significantly in all experimental groups compared with control group. Fatty acid profile of broiler chicken breast meat results showed that feeding broiler chickens on different types of fed additives were higher in unsaturated fatty acid compared with control group (T1).

The polyunsaturated fatty acids chicken meat fed on diets containing T8, T4, and T2 were higher content then other treatment. UFA/SFA ratio of broiler chicken fed on groups (T1, T4 and T7) were lower compared with those fed on T8, T2, T6, while the control group (T1) give the lowest value of UFA/SFA ratio. All treated groups showed an improved intestinal villi length and decreased crypt depth. Net return was increased by supplementing broilers diets compared with the control group (T1), the treatment (T7) recorded the highest net return among all the treatments compared to control group (T1).

It could be concluded that, dietary supplementation with dry leaves at 0.5% or a high mixture of ginger root powder and peppermint leaves powder (0.25%+0.25%) may be used for enhancing productive performance and preventing pathogenic bacterial infections of growing broiler reared under heat stress conditions.

Keywords: Natural Antioxidants, Vitamin C, Heat Stress, Performance, Antimicrobial Effect and Economic Efficiency.

ACKNOWLEDGMENT

I wish to express my deepest gratitude to my supervisor **Prof. Dr. Fathy Abdel-Azeem Mohamed**, Professor of Poultry Nutrition,
Department of Poultry Production, Faculty of Agriculture, Ain Shams
University, for his valuable advice and guidance of this work and guidance during the preparation and writing of this manuscript and sincere comments which helped me a lot to finish this study.

My honest thanks and sincere gratefulness are due to **Prof. Dr. Yosry Mohamed Ahmed El-Homosany**, Professor of Poultry Physiology,
Department of Poultry Production, Faculty of Agriculture, Ain Shams
University, for his valuable advice and guidance of this work and guidance
during the preparation and writing of this manuscript and sincere comments
which helped me a lot to finish this study.

Special thanks are due to **Prof. Dr. Hady Fathy Abbas Motawe,** Head Research Emeritus, of Regional Center for food and Feed, Agriculture Research Center, Giza, Egypt, for his supervision, and continuous encouragement and valuable advice during the study and preparation of this manuscript.

Special thanks and gratitude are due to late **Prof. Dr. Sayed Abd El-Rahman Ibrahim**, Professor of Poultry Nutrition, Department of Poultry Production, Faculty of Agriculture, Ain Shams University, for his genuine support ,constructive guidance, valuable advice and continuous encouragement during the study.

Special thanks and gratitude are due to **Dr. Marwa Mohamed Salah Eldin Ibrahim Khattab,** Associate Professor, Pathology, Faculty of Veterinary Medicine, Cairo University, for conducting and writing the report of histopathological tests and her helpful.

I would like to express all my sincere gratitude and unlimited love to everybody in my family, especial late my lovely mother, my dear father, I would like to express thanks and my lovely husband, my sons, my sisters,

my brothers and all my family for their fortitude and back-up throughout the progress of this work.

Finally, I would also like to thank all the staff members in department of Poultry Production, Faculty of Agriculture, Ain Shams University and Regional Center for Food and Feed for sincere help and kind encouragement during this study.

CONTENTS

	Page
LIST OF TABLES	V
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS	IX
INTRODUCTION	1
REVIEW OF LITERATURE	4
1. Importance of herb plants in poultry diets	4
1.1 Ginger (Zingiber Officinale)	4
1.2 Peppermint (Mentha piperita)	5
2. Vitamin C (Ascorbic acid)	5
3. The Effect of ginger, peppermint and vitamin C on	
Broiler Performance	6
3.1. Live body weight and body weight gain.	6
3.1. a. Ginger effect	6
3.1. b. Peppermint effect	8
3.1. c. Vitamin C effect	9
3.2. Feed Consumption and Feed Conversion Ratio	9
3.2. a. Ginger effect:	9
3.2. b. Peppermint effect	12
3.2. c. Vitamin C effect	13
3.3. The Effect of ginger, peppermint and Vitamin C on	
Carcass Cuts and Visceral Organs	13
3.3. a. Ginger effect	13
3.3. b. Peppermint effect	15
3.3. c. Vitamin C effect	16
3.4. The Effect of ginger, peppermint and vitamin C on	
blood serum parameters	17
3.4. a. Ginger effect	17
3.4. b. Peppermint effect	19
3.4. c. Vitamin C effect	20
3.5 The Effect of ginger peppermint and vitamin C on	20

lymphoid organs weight	
3.5. a. Ginger effect	20
3.5. b. Peppermint effect	21
3.5. c. Vitamin C effect	21
3.6 The Effect of ginger peppermint and vitamin C on	
intestinal microbial parameters	21
3.6. a. Ginger effect	21
3.6. b. Peppermint effect	22
3.6. c. Vitamin C effect	23
3.7 The Effect of ginger peppermint and vitamin C on	
Antioxidant status.	23
3.8 Effect of ginger peppermint and vitamin C on amylase	
and protease activity of stomach and ileum	24
3.9 Effect of ginger peppermint and vitamin C on some	
histological examinations of small intestine and liver	
segments	24
3.9. a. Ginger effect	24
3.9. b. Peppermint effect	25
3.9. c. Vitamin C effect	25
3.10 Effect of ginger peppermint and vitamin C on Fatty	
acid compositions of breast meats	25
3.11. Effect of ginger peppermint and vitamin C on	
economic efficiency	27
MATERIALS AND METHODS	29
1. Chemical analysis:	29
2. General management of chicks	29
2.1. Heat stress	29
2.2. Chicks and management	30
2.3 Total antioxidants capacity and phenolic content	
determination:	34
3. Measurements	35

3.1. Growth performance	35
3.1.1 live body weight	35
3.1.2 Daily body weight gain	35
3.1.3 Feed consumption	35
3.1.4 Feed conversion ratio	35
3.2. Carcass traits	36
4. Collection of Blood Sample	36
4.1 biochemical parameters	36
4.1.1. Blood serum analysis	36
4.1.2. Serum total proteins	37
4.1.3. Serum albumin, globulin and albumin/globulin ratio	
(A/G ratio)	37
4.1.4. Serum cholesterols, triglycerides, ureic acid and	
creatinine	37
4.1.5. Blood antioxidant enzymes	37
5. Amylase and protease activity of Intestinal	38
6. The fatty acid composition	38
7. Analysis of herbal using GC/MS/MS	38
8. Histological Examination	39
9. Intestinal microbial populations	39
9.1. Enumeration of total bacterial count	41
9.2. Enumeration of total <i>Coliform</i> count	41
9.3. Enumeration of Faecal Coliform count	42
9.4. Enumeration of Lactobacillus acidophilus count	43
10. Economic efficiency (EE)	43
11. Statistical analysis	43
RESULTS AND DISCUSSION	44
1. Productive performance of broilers.	44
1.1. Live body weight (LBW) and body weight gain.	44
1.2. Feed consumption and feed conversion ratio	47
2. Carcass characteristics	51
3. Biochemical blood serum parameters	53

3.1 Total protein, albumin and globulin levels.	53
3. 2. Serum cholesterols, tri-glycerides, HDL and LDL	54
4. Antioxidants status.	
5. Effect of ginger, peppermint and vitamin C on amylase	
and protease activity of Intestinal	59
6. Cecum microbial potentiality.	60
7. The fatty acid composition of breast meat	61
8. Histological observations	65
8.1. Small intestine histology	65
8.2. Liver histology	70
9. Economic efficiency (EEF)	73
SUMMARY AND CONCLUSION	76
REFERENCES	
ARABIC SUMMARY	

LIST OF TABLES

Fable		Page
1	Chemical composition of ingredients, dry ginger roots	
	and dry peppermint leaves	32
2	Composition and calculated chemical analysis of tested	
	diets during the starter, grower and finisher periods	33
3	Vaccination program.	34
4	Total antioxidant capacity, total phenolic (mg/kg) of	
	ginger and peppermint powder	34
5	Chemical composition and peak areas of ginger powder	
	analyzed by GC Mass	45
6	Chemical composition and peak areas of peppermint	
	powder analyzed by GC Mass	46
7	Effect of dietary vit C or ginger and peppermint either	
	alone or combination on performance of broiler chicks	
	under heat stress.	48
8	Performance of broiler chicks on diet fed supplemented	
	with vit C and ginger or peppermint alone or in	
	combination under heat stress	50
9	Visceral organs percentage of broiler chicks at 40 days	
	of age fed diet supplemented with vit C, and ginger or	
	peppermint either alone or in combination.	52
10	Effect of different feed additive treatments on some	
	blood parameters of broiler chickens at 40 days of age	
	under Heart stress	55
11	Effect of three sources of dietary antioxidant on plasma	
	catalase (CAT) serum malondialdehyde (MDA)	58
12	The effect of ginger, peppermint and vitamin C on	
	amylase and protease enzyme level of intestinal of	
	broiler chicken	59
13	The Effect of ginger, peppermint alone or in	
	combination and vitamin C on cecum Microbial (cfg /g)	61

	count.	
14	Effect of three sources of dietary antioxidant on fatty	
	acid composition of breast meat (g/100 g total fatty	
	acid).	63
15	Effect of three sources of dietary antioxidant on fatty	
	acid composition of breast meat (g/100 g total fatty	
	acid)	64
16	Effect of feeding different dietary treatments on	
	histological examination of broiler chickens	66
17	Economic Efficiency of treatments at 40 days of age of	
	broiler chicks	74

LIST OF FIGURES

Figure		Page
1	T.S. in the intestine of chicken in T1 group (H and E stain X 40).	68
2	T.S. in the intestine of chicken in T2 group (H and E stain X40).	68
3	T.S. in the intestine of chicken in T3 group (H and E stain X40).	68
4	T.S. in the intestine of chicken in T4 group (H and E stain X40).	68
5	T.S. in the intestine of chicken in T5 group (H and E stain X40).	69
6	T.S. in the intestine of chicken in T6 group (H and E stain X40).	69
7	T.S. in the intestine of chicken in T7 group (H and E stain X40).	69
8	T.S. in the intestine of chicken in T8 group (H and E stain X 40)	69
9	T.S. in the liver of chicken in T1 group (H and E stain X 200).	71
10	T.S. in the liver of chicken in T2 group (H and E stain	
11	X 200). T.S. in the liver of chicken in T3 group (H and E stain X 200).	71 71
12	T.S. in the liver of chicken in T4 group (H and E stain X 200).	71
13	T.S. in the liver of chicken in T5 group (H and E stain	
14	X 200). T.S. in the liver of chicken in T6 group (H and E stain	72
15	X 200). T.S. in the liver of chicken in T7 group (H and E stain X 200).	72 72
16	T.S. in the liver of chicken in T8 group (H and E stain X 200).	72