

GENERALIZATION AND CONTROL OF CHAOTIC SYSTEMS USING EXTRA PARAMETERS AND AFFINE TRANSFORMATIONS

By

Wafaa Saber AbdelHalim Sayed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in

Engineering Mathematics

GENERALIZATION AND CONTROL OF CHAOTIC SYSTEMS USING EXTRA PARAMETERS AND AFFINE TRANSFORMATIONS

By

Wafaa Saber AbdelHalim Sayed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Engineering Mathematics

Under the Supervision of

Prof. Dr. AbdelLatif E. Hussien Prof. Dr.

Prof. Dr. Ahmed G. Radwan

Professor

Professor

Engineering Mathematics and Physics Department
Faculty of Engineering, Cairo University

Engineering Mathematics and Physics Department
Faculty of Engineering, Cairo University
on leave (Nile University)

Prof. Dr. Hossam A. H. Fahmy

Professor

Electronics and Communication Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

GENERALIZATION AND CONTROL OF CHAOTIC SYSTEMS USING EXTRA PARAMETERS AND AFFINE TRANSFORMATIONS

By

Wafaa Saber AbdelHalim Sayed

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Engineering Mathematics

Approved by the Examining Committee:

Prof. Dr. AbdelLatif E. Hussien, Thesis Main Advisor

Prof. Dr. Ahmed G. Radwan, Advisor

Professor, Nile University

Prof. Dr. Mohammed A. El-Beltagy, Internal Examiner

Prof. Dr. Hassan I. Saleh, External Examiner

Professor, Radiation Engineering, Egyptian Atomic Energy Authority

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020 Engineer's Name: Wafaa Saber AbdelHalim Sayed

Date of Birth: 20/3/1991 **Nationality:** Egyptian

E-mail: wafaa.s.sayed@eng.cu.edu.eg

Phone: +201203226271

Address: 3 Msaken elsekka-elhadid-elgdeda,

Ramlet-Bolaq, Cairo

Registration Date: 1/10/2015 **Awarding Date:** -/-/2020

Degree: Doctor of Philosophy

Department: Engineering Mathematics and Physics

Supervisors:

Prof. Dr. AbdelLatif E. Hussien Prof. Dr. Ahmed G. Radwan Professor, Nile University Prof. Dr. Hossam A. H. Fahmy

Examiners:

Prof. Dr. Hassan I. Saleh, Professor, (External examiner)
Radiation Engineering, Egyptian Atomic Energy Authority
Prof. Dr. Mohammed A. El-Beltagy (Internal examiner)
Prof. Dr. AbdelLatif E. Hussien (Thesis main advisor)

Prof. Dr. Ahmed G. Radwan (Advisor)

Professor, Nile University

Title of Thesis:

Generalization and Control of Chaotic Systems Using Extra Parameters and Affine Transformations

Key Words:

Fractional dynamics; Hidden attractors; Image encryption; Non-autonomous control; Switched synchronization

Summary:

Generalized scaled, reflected, rotated, sheared and/or translated chaotic attractors are generated via extra parameters and affine transformations. Reproducibility rules are set and potential applications of the implementation sensitivity property are discussed. Distributed self-reproduced attractors on an arbitrary trajectory are generated through dynamic parameters. A nontraditional multi-character chaotic writer is introduced. The proposed generalized chaotic systems are verified experimentally and exploited successfully in simple and synchronization-dependent ciphers.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Wafaa Saber AbdelHalim Sayed Date:

Signature:

Dedication

To my beloved mother, Taragy, for her invaluable support. I could not have accomplished any success without her continual efforts.

To my beloved younger brother, Ahmed, who is a source of inspiration and a motivation for success.

To my sister by heart, not blood, my best friend forever Shaimaa Samir.

Acknowledgements

First and foremost, I am thankful to Allah for His uncountable grants upon all of us. I owe sincere gratitude to Prof. AbdelLatif E. Hussien, Prof. Ahmed G. Radwan, and Prof. Hossam A. H. Fahmy for their valuable guidance and support. It is my pleasure to have this distinguished group of professors as my MSc. and PhD. thesis advisors, and I hope I managed to be as trustworthy as they expected. They gave me so much of their precious time, in spite of their busy schedules, and helped me out of many problems with their knowledge and experience. They have always encouraged me to explore new areas of science. They provided me with invaluable guidance in my early experiences in international publication. They answered my questions patiently and paid attention to every fine detail.

I would also like to thank Prof. Ahmed G. Radwan for being confident in my capabilities, motivating me to exert relentless efforts in my work and recommending me to participate in several research projects and collaborations. Through his recommendation, I got the great chance of learning from Prof. Salwa Abd-El-Hafiz; her extraordinary knowledge, diligence, dedication and accuracy cannot be easily put in words. I would also like to thank Eng. Moheb Henein, Eng. Sherif AbdElHaleem, Eng. Merna Habib, and Eng. Mohammed Tolba for their cooperation, sharing their expertise and the positive impact of our collaboration on the development of my knowledge.

I would like to thank my dear superior colleagues; specifically those who are patiently always a source of support and kindness and those who have helped me since day one as a teaching assistant and postgraduate student, namely: Dr. Ahmed ElSheikh and Dr. Mahmoud Taha. Special thanks go to the most trustworthy superior colleague Dr. Mohammed Fouda, who has always helped me in many situations, patiently provided me with his special technical tips and tricks whenever I got stuck, and given me sincere advice; let alone that he recommended me as an MSc. student to Prof. Radwan.

Finally, I would like to thank my dear friends and companions during the teaching, postgraduate studies, MSc. and PhD. journey. For the ones who are still in connection, I hope that it is not just a phase that will come to an end and that we can keep in touch and maintain the friendship bonds. I am grateful to every colleague, teacher and professor who contributed to my knowledge and my decisions throughout the route towards my career. May Allah bless and reward all those who have supported me.

Table of Contents

Di	isclain	ner		i
De	edicat	ion		ii
A	cknow	ledgen	nents	iii
Ta	ble of	f Conte	nts	iv
Li	st of T	Fables		vii
Li	st of I	Figures		ix
Li	st of S	Symbol	s and Abbreviations	xii
Al	bstrac	et		xiii
1	1.1 1.2	Backg List of Public	CTION round and Motivation	2 3
2	REV	IEW (OF LITERATURE	6
	2.1	Evolut	ion of Chaotic Generators	6
		2.1.1	Discrete-Time Chaotic Maps	
		2.1.2	Continuous-Time Chaotic Systems	
			2.1.2.1 Multi-Stability and Co-existing Attractors	8
			2.1.2.2 Multi-Scroll and Multi-Wing Chaotic Attractors	8
			2.1.2.3 Hidden Attractors	9 9
	2.2	Ganari	2.1.2.4 Fractional Calculus and Chaotic Systems	9
	2.2	2.2.1	Amplitude Control	10
		2.2.2	Offset Boosting	11
		2.2.3	More Systems with a Variable/Infinite Number of Equilibrium Points	
		2.2.4	Polarity and Degree Modification, Functions and Transformations	14
		2.2.5	Chaotic Systems in Spherical Coordinates	16
		2.2.6	Classification of the Reviewed Papers	17
	2.3		c Synchronization and Encryption Applications	18
	2.4		mentation of Chaotic Systems	18
		2.4.1	Digitally Implemented Generalized Chaotic Systems	19
		2.4.2	Hidden Potential of Implementation Sensitivity	19

3	CO	NTROL	LABLE	JERK-BASED	ATTRACTORS	AND R	EPRO-	
	DU	CIBILI	ГҮ				2	21
	3.1	Two M	Iodified N	on-Linearities			2	21
		3.1.1	Piece-W	ise Nonlinearity: S	caled Tent Map .		2	21
		3.1.2			aled Logistic Map			2
	3.2	Genera			ed Systems Using E			2
		3.2.1			Parameters			27
		3.2.2	Sensitivi	ty to Scaling Parar	neters		3	0
		3.2.3	Self-Rep	producing and Mult	ti-Scroll Attractors		3	4
		3.2.4	Fraction	al-Order Extension	and Sensitivity to l	Fractional (Orders . 3	5
	3.3	Repro	ducibility	Rules and Impleme	entation Sensitivity			
		3.3.1	Sensitivi	ty to Order of Add	itions			
			3.3.1.1	•	g-Point Implementa			
					Point Implementation			
		3.3.2			tiplications			
			3.3.2.1	-	g-Point Implementa			
			3.3.2.2		Point Implementation			
	3.4		•	•	tion			
		3.4.1			Schemes			
		3.4.2						
	3.5	Encry	otion App	lication of the Misi	natch Signal		4	-8
4	2D /	AND 3E) AFFINI	E TRANSFORM <i>A</i>	TIONS-BASED C	ONTROL	5	2
	4.1				nations			
	4.2							
		4.2.1		•	eralized Simplest S			3
		4.2.2		_	eralized Lorenz Sys	-		6
	4.3	Traject			anslation			6
4.4 PRNG and Image Encryption Application				9				
		4.4.1	Encrypti	on and Decryption	Schemes		6	51
		4.4.2						
			4.4.2.1	PRNG Properties			6	2
			4.4.2.2	Perceptual and St	tatistical Tests		6	2
			4.4.2.3		ey Sensitivity			5
			4.4.2.4	Resistance to Dif	ferential Attacks .			
			4.4.2.5	Resistance to Oth	ner Cryptanalysis A	ttacks		
			4.4.2.6	Robustness Again	nst Noise			
			4.4.2.7	Time Analysis .			6	7
		4.4.3			n Against Other Wo			
	4.5	Extens			stems with Hidden			
		4.5.1			in Fractional-Order	•		7]
		4.5.2			in Fractional Syste			
		4.5.3						
			4.5.3.1		plexity Estimation			
			4.5.3.2		ers and Bifurcation	•		
		4.5.4		tonomous Paramete				7
			4.5.4.1	Multiple Wings (Generated by Multi-	Level Pulse	e Signals 7	7

			4.5.4.2	Multiple Wings Distributed on a Predefined or Arbitrary	
				Line, Curve or Surface	. 77
		4.5.5	Impact of	on Potential Encryption Applications	. 79
5	PLA	NAR A	AND SPA	TIAL ROTATION WITH A SYNCHRONIZATION-	
				RYPTION APPLICATION	82
	5.1	Rotatio	on with O	ffset Boosting and Amplitude Control	. 82
		5.1.1		haracter Chaotic Attractor	
			5.1.1.1	V-like Characters	. 83
			5.1.1.2		
			5.1.1.3	Curved Characters	. 84
		5.1.2	Planarly	Rotating Translational Fractional-Order Multi-Scroll Grid	
			Chaotic	System	. 86
			5.1.2.1	Encryption Applications	. 87
			5.1.2.2	Experimental FPGA Realization	. 90
	5.2	Synch	ronization	-Dependent Image Encryption Application	. 92
		5.2.1	•	c Rotation of Three Fractional-Order Chaotic Systems .	
		5.2.2	Generali	zed Switched Synchronization Scheme	
		5.2.3		on Results for the Synchronization Scheme	
		5.2.4		d Encryption/Decryption Scheme	
		5.2.5		on Results and Performance Evaluation	
		5.2.6		on and Comparison	
	5.3			anal Rotating Chaotic Systems	
		5.3.1	-	entation I: Matrix-Based Rotation	
			5.3.1.1	Mathematical Analysis	
			5.3.1.2	Matrix-Based Rotating Chaotic System	
		5.3.2	_	entation II: Quaternions-Based Rotation	
			5.3.2.1	•	
			5.3.2.2	Quaternion-Based Rotating Chaotic System	
		5.3.3	_	entation III: Shearing-Based Rotation	
			5.3.3.1	Mathematical Analysis of 2D Skewing	
			5.3.3.2	Shearing-Based Rotating Chaotic System	
		5.3.4		Rotating Fractional-Order System Realization	
	5.4	Prelim	inary Insi	ghts on Jerk-Analogues in Other Coordinates	. 112
6	CO	NCLUS	SIONS AN	ND FUTURE WORK	113
Re	eferen	ices			116

List of Tables

2.1	Examples of chaotic generators	,
3.1	Proposed systems and their properties	25
3.2	Responses against the parameter r at $a = b = \mu = 1 \dots \dots$	27
3.3	Responses against the parameter μ at $a = b = 1$ and $r = 0.6$	27
3.4	Summary of the sensitivity to the system parameter μ and the similarities	
	with the discrete scaled tent and logistic maps	29
3.5	Piece-wise nonlinearity system attractor diagrams and time series for	
	different combinations of the parameters b and μ at $a=1$ and $r=0.6$	30
3.6	Summary of the sensitivity of the piece-wise nonlinearity system to the	
	scaling parameters a and b and the similarities with the discrete scaled	
	tent map	31
3.7	Summary of the sensitivity of the quadratic nonlinearity system to the	
	scaling parameters a and b and the similarities with the discrete scaled	
	logistic map	32
3.8	Piece-wise nonlinearity system responses versus the fractional-order α at	
	parameter values $a = b = \mu = 1$ and $r = 0.6$	37
3.9	Quadratic nonlinearity system responses versus the fractional-order α at	
	parameter values $a = b = \mu = 1$ and $r = 0.5$	37
3.10	Different implementations of three chaotic systems corresponding to dif-	
	ferent orders of addition	38
3.11	Time series and three-dimensional plots of the error between cases I	
	and III of system 1 for different time steps and precisions in a floating-	
	point implementation	40
3.12	Time series and three-dimensional plots of the error between cases I and III	
	of systems 2 and 3 for different time steps and precisions in a software	
	floating-point implementation	41
3.13	Time series and three-dimensional plots of the error between cases I and V	
	of system 3 for different time steps and precisions in a floating-point	
	implementation on Matlab	44
3.14	Time series and three-dimensional plots of the error between cases I	
	and V of system 3 for different time steps and precisions in a fixed-point	
	implementation	45
3.15	Hardware resources utilization and efficiency of mismatch signals production	46
	Performance metrics of image encryption systems	48
	Decryption results for each of cases I, IV and V using case V in encryption	49
	Performance evaluation of the image encryption scheme based on the	
	mismatch signal	50
3.19	NIST results for the PRNG based on the mismatch signal and encrypted	
	images	51
1 1	English to the state of the single of the si	۔ ہے
4.1	Example transformations of the simplest chaotic system	54
4.2	Transformations of the simplest chaotic system: results and discussion	55

4.3	Attractor diagrams and time series of (4.8)	57
4.4	Trajectory control of (4.9) for $a = e = 0.1$ and different dynamic c and f	
	parameters	60
4.5	NIST results for the PRNG and encrypted images	64
4.6	Performance metrics of the scheme for three encrypted images	66
4.7	Chosen plaintext attack/known plaintext attack analysis	67
4.8	Comparison of the ideas and evaluation of different image encryption	
	schemes	69
4.9	Summary of Hidden Chaotic Attractors in Fractional-Order Systems	72
4.10	Transformed Systems Special Cases Using Autonomous Parameters	74
4.11	Multi-level pulse signals used in Fig. 4.14	78
5.1	Single character generation	85
5.2	x- y projections and bifurcation diagrams of the solution of (5.8)	88
5.3	The proposed image encryption scheme and its performance analysis	89
5.4	The proposed speech encryption scheme and its performance analysis	90
5.5	FPGA summary and experimental results for rotating fractional-order	
	multi-scroll attractor	91
5.6	Systems equations and attractor diagrams at $(\alpha, \beta, \gamma) = (0.99, 0.96, 0.95)$.	93
5.7	Dynamic rotation examples for the three systems and four dynamic signals,	
	where $A = 5$ and $T = 50 \dots$	94
5.8	Successful synchronization simulation results	98
5.9	NIST results for the PRNG from the three chaotic systems	101
5.10	Performance evaluation of the image encryption scheme for three synchro-	
	nization scenarios	102
5.11	3D rotation FPGA summary and experimental results for the fractional-	
	order multi-scroll grid attractor	111
5.12	Proposed chaotic equations in other coordinate systems	112

List of Figures

2.1	Classification of the reviewed paper and their publication years	17
3.1 3.2	Scaled (a) positive and (b) mostly positive tent maps, where $\mu_{min} = -\left(1 + \frac{1}{b}\right)$. Generic bifurcations of the scaled tent map in both sides of μ (a) $b < 1$, (b)	23
	<i>b</i> > 1	23
3.3	Bifurcations of the scaled tent map at (a) $b = 1$ and $a = \{0.5, 1, 2\}$ and (b)	
	$a = 1$ and $b = \{1, 2, 4\}$	23
3.4	Scaled (a) positive and (b) mostly positive logistic maps	24
3.5	(a) Generic bifurcations of the scaled logistic map and numerical examples	
	at (b) $b = 1$ and $a = \{0.5, 1, 2\}$ and (c) $a = 1$ and $b = \{0.5, 1, 2\}$	24
3.6	Time series sampling to decide the type of system response	26
3.7	Bifurcation diagram and MLE against the parameter r for (a) the piece-	
	wise nonlinearity system at $\mu = a = b = 1$ and (b) the quadratic non-linearity	
	system at $\mu = a = b = 1$	28
3.8	Scaled chaotic responses of the piece-wise nonlinearity system for different	
	values of the parameter a at $b = \mu = 1$, $r = 0.6$	33
3.9	Scaled chaotic responses of the quadratic nonlinearity system for different	
	values of the parameter b at $a = \mu = 1$ and $r = 0.5$	33
3.10	Bifurcation diagrams versus μ of (a) the piece-wise nonlinearity system at	
	$b = \{0.5, 1\}$ and (b) the quadratic nonlinearity system at $a = \{0.5, 1\}$	34
3.11	Differently allocated attractor diagrams at $b > 0$ (darker) and $b < 0$ (lighter)	
	for (a) the piece-wise nonlinearity system and (b) the quadratic nonlinearity	
	system	34
3.12	(a) Four-scroll attractor using the piece-wise nonlinearity system and (b)	
2.12	Double-scroll attractor using the quadratic nonlinearity system	35
3.13	The studied chaotic systems and map, their implementation cases and	20
2 1 4	sensitivity factors	38
3.14	(a) Attractor diagrams and (b) mismatches in x time series of the three	20
2 1 5	cases of system 1 in software double-precision floating-point implementation.	39
3.15	Bifurcation diagrams of (a) system 1, (b) system 3, (c) LEs of system 3 at	40
2.16	b = 0.6 and (d) MLE versus b	42
3.16	(a) Exact implementation, f_1 versus f_1 . (b) Double-precision and (c)	
	single-precision floating-point different implementations, f_2 versus f_1 , of	42
2 17	the logistic map	43
3.17	Fixed-point computations sensitivity of the logistic map (a) $p_f = 24$, (b)	4.4
2 10	$p_f = 32$ and (c) $p_f = 48$	44
3.18	Chaotic properties of f_1 in double, single floating-point and fixed point	15
2 10	$(p_f = 32)$ computations (a) time series and (b) MLE	45
3.19	Oscilloscope experimental mismatch signal result between two different	46
3 20	cases of system 3	40
5.20	with feedback. (b) multiplexing table and (c) the utilized PRNG	47

3.21	(a) Time series, (b) frequency distribution of the outputs, (c) histogram and (d) auto-correlation function of the PRNG based on the mismatch signal.	50
4.1	Attractor diagram and time series of system (4.3)	53
4.2	EVI against θ at the (a) first and (b) second equilibrium points	56
4.3	MLE of (4.8) against the parameters in (a) Scaling, (b) Translation and (c)	
	Shearing cases	58
4.4	Trajectory control of transformed Lorenz chaotic system by scaling and translation for (a) line $f = c$, (b) parabola $f = c^2$, (c) a square and (d) a	
	circle of radius 4 ($c^2 + f^2 = 16$) at $a = e = \frac{1}{8}$	58
4.5	Bifurcation diagrams of transformed Lorenz chaotic system against the translation parameter c for the parabolic trajectory $f = c^2$ and different	
4.6	values of the scaling parameters (a) $a = e = 0.1$ and (b) $a = e = 0.7$	59
4.6	(a) Encryption/decryption block diagrams, encryption/decryption key for	
	(b) Lorenz and (c) transformed Lorenz chaotic generators and (d) multi-	<i>C</i> 1
17	plexing table	61
4.7	Time series of Lorenz, light colored, and transformed Lorenz, dark colored, at $a = 2$, $b = 0.25$, $c = 3$, $d = -0.5$, $e = -2$, $f = -4$, $x_0 = y_0 = z_0 = w_0 = 0.1$	(2
10	$u_0 = 3.225$ and $v_0 = -0.425$ Time series, frequency distribution of the outputs and histogram of the	62
4.8	PRNG using (a) Lorenz and (b) transformed Lorenz chaotic generators.	63
4.9	Original and encrypted (a) mandril and (b) peppers images	64
4.10	Histograms of the red channel of (a) Lena image and the corresponding	04
7.10	encrypted images using (b) Lorenz and (c) transformed Lorenz systems.	64
4.11	Decrypted images and correlation coefficients corresponding to Lena for (a) AWGN of mean 0 and different variances and (b) S & P of different	04
	densities when $P_{sum} = 0$ and MUX is removed	68
4.12	Generic case of transformed (a) system 1 and (b) system 2	76
	Bifurcation diagrams and SE plots of transformed system 2 against affine	
	transformation parameters	77
4.14	Multi-wing attractors by transformed system 1 and multi-level pulse sig-	
	nals as (a) scaling (b) skewing parameters and (c) rotation angle	78
4.15	Self-reproduced attractors by transformed system 1 along (a) a line, (b) a	
	circle and (c) a sphere.	79
4.16	Simple example substitution cipher based on the proposed transformed	
	system(s) and encryption key design	80
4.17	(a) u, (b) v and (c) w bifurcation diagrams and (d) MLE against the rotation	
	angle θ of rotating Lorenz system	81
5.1	Rotating multi-scroll system at (a) $\theta = 0$ and (b) $\theta = \pi/2$	84
5.2	Rotating V-shape for dynamic values of θ and different number of scrolls.	84
5.3	Multi-character attractors writing (a) "WELCOME", (b) "WORLD",	
	"WELCOME WORLD" on (c) a single line and (d) two lines	86
5.4	Two-dimensional (a) static translation, (b) dynamic translation and (c)	
	dynamic rotation	88
5.5	Experimental results for rotating integer-order V-shape multi-scroll attractor	91
5.6	Static rotation of the three fractional-order chaotic systems	93

5.7	Multi-scroll attractors generated by dynamic rotation of system 2 using	
	(a) $\theta = 5 \ square\left(\frac{2\pi t}{50}\right)$ and (b) $\theta = 5 + \lfloor \frac{t}{50} \rfloor$	94
5.8	Generalized dynamic switched synchronization scheme of rotating	
	fractional-order chaotic systems	96
5.9	Generalized dynamic switched synchronization applications on rotating	
	chaotic systems	97
5.10	Synchronization-Dependent Image Encryption/Decryption Scheme	99
5.11	Histograms of the encrypted red channel for (a) scenario 1 (b) scenario 2	
	and (c) scenario 3	101
5.12	Failed attack of image green channel restoration from the proposed rotating	
	chaotic time series	103
5.13	Projections of the attractor diagrams of (5.22) at (a) $\theta_1 = \theta_2 = 0$ and	
	$\theta_3 = \pi/4$, (b) $\theta_1 = \theta_3 = 0$ and $\theta_2 = \pi/4$ and (c) $\theta_2 = \theta_3 = 0$ and $\theta_1 = \pi/4$	106
5.14	Attractor diagram and time series from the rotation-matrix and quaternion-	
	based implementations	108
5.15	Rotation by -20° using three successive shears for the simplest chaotic	
	system	110
5.16	Attractor diagram and time series from the rotation-matrix and shearing-	
	based implementations	110
5.17	Spatially rotating fractional-order multi-scroll grid attractor at $(\theta_1, \theta_2, \theta_3)$ =	
	$(90^{\circ}, 90^{\circ}, 45^{\circ})$	111