

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Ain Shams University

Faculty of Pharmacy

Department of Pharmaceutics and Industrial Pharmacy

Topical delivery systems for a natural product

Thesis submitted in partial fulfillment of the requirements for the Master Degree in Pharmaceutical Sciences

(Pharmaceutics)

By

Bassant Atef Abdel-Hafez Sayed El-Ahl

(Bachelor of Pharmaceutical Sciences, 2014)

Under the supervision of

Prof. Dr. Sabry Sayed Badawy (RIP)

Professor of Pharmaceutics and Industrial Pharmacy

Faculty of Pharmacy

Misr International University

Prof. Dr. Rihab Osman Ahmed

Professor of Pharmaceutics and Industrial Pharmacy

Faculty of Pharmacy

Ain Shams University

Prof. Dr. Rania Aziz Helmy Ishak

Professor of Pharmaceutics and Industrial Pharmacy

Faculty of Pharmacy

Ain Shams University

(2022)

Acknowledgments

First and foremost, thanks to God by the grace of whom this work was achieved.

I was lucky to have supervisors who cared a lot about me and my work.

I would like to express my sincere gratitude to **Prof. Sabry Sayed Badawy** (**RIP**), Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Misr International University, for the great support, valuable guidance, and precious advices.

No word could ever express my deep thanks and gratitude to **Prof. Rihab Osman Ahmed**, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, for her valuable advices, critical comments, extreme patience; I owe her a lot of gratitude for providing me with a wealth of information and great support.

I am also grateful **to Prof. Rania Aziz Ishak**, Professor of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, who directed and encouraged me throughout my thesis with her patience and knowledge. I am very thankful for her valuable guidance and supervision.

I would like to express my gratitude to **Prof. Hany Mahmoud**, Head of Pharmaceutics and Industrial pharmacy department, Misr International University, for his great support.

I would like to express my deep thanks to my colleague **Reem Ashraf** for her technical and knowledgeable advice and support.

Finally, my deep and sincere gratitude to **my family** who encouraged and supported me all along.

Bassant Atef 2022

List of contents

List of contents

Item	Page
List of abbreviations	Ι
List of tables	IV
List of figures	VI
Abstract	XI
General introduction	1
Scope of work	16
Chapter 1: Preparation and optimization of magnolol	
loaded ufasomes	17
Introduction	17
Experimental	28
1. Materials	28
2. Equipment	29
3. Methodology	30
3.1. Spectrophotometric assay of Mag	30
3.1.1. UV scanning of Mag using UV-visible spectrophotometer	30
3.1.2. Construction of Mag calibration curve in different media	30
3.2. HPLC assay of Mag	30
3.3. Preparation of plain ufasomes	31
3.3.1. Preliminary optimization studies for the	
preparation of plain ufasomes	32
3.3.1.1. Effect of buffer type	32
3.3.1.2. Effect of hydration timing	32

4.1. S	pectrophotometric assay of Mag in different media	44
4. Re	sults and discussion	44
	3.10.2. Optimization data analysis	43
	3.10.1. Point prediction and model validation	43
3.10.	Statistical analysis	42
3.9.	Physical stability study of Mag-ufasomes dispersions	42
	3.8.3. Drug skin deposition studies	42
	3.8.2. Skin permeation studies	40
	3.8.1. Preparation of rat skin	40
3.8. Ex vivo skin permeation and deposition studies		40
3.7. <i>In vitro</i> drug release study		39
	3.6.5. Differential Scanning Calorimetry (DSC) analysis	39
	3.6.4. Examination by transmission electron microscope (TEM)	39
	3.6.3. Determination of Mag encapsulation efficiency (EE)	38
	3.6.2. Zeta potential (ZP) determination	38
	3.6.1. PS and PDI measurements	37
3.6. 0	Characterization of the prepared ufasomes	37
3.5. 0	Optimization of Mag loaded ufasomal formulations	34
3.4. F	reparation of Mag-loaded ufasomes	33
	3.3.1.7. Effect of HDA as a novel fatty acid	33
	3.3.1.6. Effect of Span® 80 concentration	33
	3.3.1.5. Effect of surfactant type	33
	3.3.1.4. Effect of fatty acid concentration	33
	3.3.1.3. Effect of the rounded flask capacity	32

4.2. HPLC assay of Mag in PBS (pH 7.4) containing	
2% Tween® 80 using HPLC	49
4.3. Preparation of ufasomes	51
4.4. Preliminary optimization studies for the preparation of plain ufasomes	52
4.4.1. Effect of buffer type	53
4.4.2. Effect of hydration timing	54
4.4.3. Effect of the rounded flask capacity	54
4.4.4. Effect of oleic acid concentration	55
4.4.5. Effect of surfactant type	55
4.4.6. Effect of Span®80 Concentration	56
4.4.7. Effect of HDA as a novel fatty acid forming HDA vesicles	57
4.5. Preparation of Mag-loaded ufasomes according to Box-Behnken design	59
4.5.1. Model generation	59
4.5.2. Model diagnostics	62
4.5.3. Data analysis	66
4.5.3.1. PS response	66
4.5.3.2. ZP response	76
4.5.3.3. EE response	80
4.5.4. Model validation	82
4.5.5. Optimization analysis	82
4.6. Characterization of the optimized ufasomes	87
4.6.1. Differential Scanning Calorimetry (DSC)	87
4.6.2. TEM imaging	89
4.7. In vitro drug release studies	89
4.8. <i>Ex-vivo</i> skin permeation studies	93
4.9. Skin deposition studies	96
4.10. Physical stability study	97

Conclusions	100
Chapter 2: Preparation and characterization of o	organogel formulations
for topical delivery of magnolol loade	d ufasomes. 101
Introduction	
Experimental	107
1. Materials	107
2. Equipment	107
3. Methodology	108
3.1. Preparation of plain lecithin organogels (OG) 108
3.2. Preparation of Mag loaded OG formulation	ons 108
3.3. Characterization of the prepared OG	109
3.3.1. Organoleptic properties	109
3.3.1.1. Physical examination	109
3.3.1.2. Consistency test	109
3.3.2. pH determination	109
3.3.3. Drug content analysis	109
3.3.4. Evaluation of gel characteristics	110
3.3.4.1. Determination of gel trans	nsition temperature 110
3.3.4.2. Determination of gelatio	n time 110
3.3.4.3. Spreadability test	110
3. 3.5. Rheological studies	111
3.3.6. Differential scanning calorimetry ((DSC) 111
3.3.7. Scanning electron microscope (SE	M) 112
3.4. <i>In vitro</i> drug release studies	112
3.5. Ex vivo skin permeation and deposition stud	dies 112
3.6. Statistical analysis	113

4. Results and discussion	114
4.1. Preparation of plain and Mag loaded OG formulations	114
4.2. Characterization of the prepared OG formulations	114
4.2.1. Organoleptic properties	114
4.2.2. pH and drug content analysis	114
4.2.3. Gel characteristics	115
4.2.3.1. Gel transition temperature	115
4.2.3.2. Gelation time	116
4.2.3.3. Spreadability	116
4.2.4. Rheological studies	117
4.2.5. DSC	121
4.2.6. SEM Imaging of gel microstructures	122
4.3. <i>In vitro</i> drug release studies	125
4.4. Ex-vivo skin permeation studies	130
4.5. Skin deposition studies	135
Conclusions	139
Chapter 3: In vivo anti-cancer evaluation of	
magnolol loaded ufasomes and organogel formulations.	
Introduction	141
Experimental	147
1. Materials	147
2. Equipment	147
3. Animals	147
4. Methodology	148
4.1. <i>In vivo</i> anticancer evaluation	148

4.1.1. Animal model	148
4.1.2. Tumor induction using DMBA.	149
4.1.3. Treatment with the selected Mag-loaded formulations	149
4.1.4. Assessment of mice body weight	150
4.1.5. Measurements of tumor size and number of papillomas	150
4.2. Determination of malondialdehyde (MDA) and glutathione	
(GSH) levels in skin tumor samples	151
4.3. Immunohistochemistry (Ki-67 expression) analysis	151
4.4. Histopathological examinations	152
4.5. Statistical analysis	152
5. Results and discussion	
5.1. Mice body weight	153
5.2. Tumor size and number of papillomas	154
5.3. MDA and GSH levels in skin tumor samples	162
5.4. Immunohistochemistry (Ki-67 expression) analysis	165
5.5. Histopathological examinations	170
Conclusions	181
General conclusions	183
Future perspectives	184
Summary	185
References	192
Appendix I	
Ethical approval for in vivo studies	
Appendix II	
Published review article	

Arabic summary

List of Abbreviations

List of abbreviations

Abbreviation Designation

 α -MNG α -mangostin

5-FU 5-flurouracil

AG Ammonium glycyrrhizinate

AgNPs Silver nanoparticles

ANOVA Analysis of variance

BCC Basal cell carcinoma

BSA Bovine serum albumin

CLO Clotrimazole

Conc Concentration

Cur Curcumin

DEX Dexamethasone

DSC Differential scanning calorimetry

DMBA 7,12- dimethylbenz(a)anthracene

EE Entrapment efficiency

EMT Epithelial-mesenchymal transitions

FLU Fluconazole

GSH Glutathione

HDA 10-Hydroxy decanoic acid

h Hour

IC50 50% inhibitory concentration

LDH Lactate dehydrogenase

LDC Lidocaine

m-Cur Monoketonic curcuminoid

ME Microemulsion

MDA Malondialdehyde

MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide)

Mag Magnolol

NE Nanoemulsion

NLCs Nanostructured lipid carriers

NMSC Non-melanoma skin cancer

NPs Nanoparticles

OA Oleic acid

OAV Oleic acid vesicles

OCT Optical coherence tomography

OG Organogel

PBS Phosphate buffer solution

PS Particle size

PDI Polydispersity index

PpIX Protoporphyrin IX

PTX Paclitaxel

PL90G 90% Soya phosphatidylcholine

PLN PEGylated lipid nanocarriers

PLO Pluronic lecithin organogel

RA Rheumatoid arthritis

RCM Reflectance confocal microscopy

ROS Reactive oxygen species

Rpm Rotation per minute

SAA Surface active agent

SEM Scanning electron microscope

SC Stratum corneum

SCC Squamous cell carcinoma

SSD Silver Sulphadiazin

TEM Transmission electron microscope

TER Terbinafine

UF Ufasomes

UV Ultraviolet

Vs Versus

ZP Zeta potential

List of Tables