

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Assessment the Role of Non Invasive Biomarkers as an Early Predictors of Mucosal Healing in Ulcerative Colitis Patients Treated with the Biological Therapy

Thesis

Submitted for Partial Fulfilment of Master Degree in Tropical Medicine

By

Shaimaa Abdelrahman Ahmed M.B.B.Ch.

Under supervision of

Prof./ Ashraf Mohamed AL Breedy

Professor of Tropical Medicine Faculty of Medicine - Ain Shams University

Dr/ Mohamed Mahmoud Eltabbakh

Assistant Professor of Tropical Medicine Faculty of Medicine - Ain Shams University

Dr/ Yasser Arafat Abd El Razek

Lecturer of Tropical Medicine Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2022

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof./ Ashraf Mohamed AL Breedy, Professor of Tropical Medicine - Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Dr/ Mohamed Mahmoud Eltabbakh, Assistant Professor of Tropical Medicine, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Dr/ Yasser Arafat Abd El Razek, Lecturer of Tropical Medicine, Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Shaimaa Abdelrahman Ahmed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	5
Review of Literature	
Ulcerative Colitis (UC)	6
Non invasive biomarkers in IBD	41
Patients and Methods	56
Results	64
Discussion	99
Summary	116
Conclusion	120
Recommendations	121
References	122
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Disease activity adapted from Truel Witts	
Table (2):	Mayo activity scoring index	15
Table (3):	Mayo activity scoring index	59
Table (4):	Baseline characteristics of the patients	
Table (5):	Baseline laboratory data of the patients before starting biological the	
Table (6):	Disease severity and other parameters among the studied before starting biological therapy:	patients
Table (7):	Response to steroids, extrair manifestations, timing of starting b treatment and type of biological there	iological
Table (8):	Laboratory parameters at 3 months from starting biological therapy:	-
Table (9):	Disease severity at 6 months follow starting biological therapy:	-
Table (10):	Laboratory parameters at 6 months for from starting biological therapy:	
Table (11):	Mayo endoscopic scores, respo biological therapy and mucosal heal months follow up	ing at 6
Table (12):	Laboratory data at baseline, 3 momenths from starting biological thera	·
Table (13): T	The studied ratios (NLR, PLR, LMR, PCRP to albumin) at baseline, 3 momenths from starting biological thera	onths, 6

List of Tables cont...

Table No.	Title	Page No.
Table (14): 1	Relation of mucosal healing at 6 mon different parameters:	
Table (15): 1	Relation of mucosal healing at 6 mon non-invasive markers at baseline studied patients:	e of the
Table (16):	Relation of mucosal healing at 6 mornon-invasive markers at 3 and 6 follow up of the studied patients:	months
Table (17):	Relation between clinical responsions months and studied ratios at baseling	
Table (18):	Relation between clinical remission months and the studied ratio at base	
Table (19):	Relation between clinical response remission and mucosal healing:	
Table (20):	The best ratios to predict mucosal h 6 months	_

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Schematic representation of interaction between α4β7 integrin vedolizumab	and
Figure (2):	Sex distribution among the streaming patients	
Figure (3):	Occupation of the studied patients	65
Figure (4):	MES of the studied patients	
Figure (5):	Location of the disease of the st patients	
Figure (6):	Response to steroids among the st patients	udied
Figure (7):	Extraintestinal manifestations a studied patients	_
Figure (8):	Type of biological therapy among studied patients	•
Figure (9):	Disease severity after 6 months follow among the studied patients	-
Figure (10):	Mayo endoscopic score at 6 months f	Collow
	up	79
Figure (11):	Mucosal healing at 6 months follow u	p 79
Figure (12):	Clinical response to biological therapy months follow up	•
Figure (13):	Lymphocyte and monocyte count baseline, 3months and 6 months starting biological therapy	from
Figure (14):	Lymphocyte to monocyte ratio at bas 3months and 6 months from sta biological therapy	ırting

List of Figures (Cont...)

Fig. No.	Title	Page N	lo.
Figure (15):	Neutrophil to lymphocyte ratio baseline, 3months and 6 months f starting biological therapy	rom	. 85
Figure (16):	Platelet count at baseline, 3 months armonths from starting biological therap		. 85
Figure (17):	Platelet to lymphocyte ratio at baselin months and 6 months from star biological therapy	ting	. 86
Figure (18):	Platelet to monocyte ratio at baselin months and 6 months from star biological therapy	e, 3 ting	
Figure (19):	ESR values at baseline, 3 months armonths from starting biological therap	id 6	
Figure (20):	CRP values at baseline, 3 months armonths from starting biological therap		. 87
Figure (21):	CRP to albumin ratio at baseline months and 6 months from star biological therapy	ting	. 88
Figure (22):	ROC Curve analysis to assess the best off point of the studied ratios	cut	

List of Abbreviations

Abb.	Full term
5ASA	Aminosalicylates
6-MP	6-mercaptopurine
ADA	Adalimumab
ANCA	Antineutrophil cytoplasmic antibodies
ASCA	Anti– Saccharomyces cerevisiae antibodies
<i>AXR</i>	Abdominal x ray
AZA	Azathioprine
B2-M	Beta 2 microglobulin
<i>BE</i>	Barium enema
BUS	Bowel ultrasound
<i>CD</i>	Crohn's disease
<i>CRP</i>	C-reactive protein
CRP/ALB	C-reactive protein/albumin ratio
CsA	Cyclosporine
<i>CTC</i>	CT colonography
CTE	CT enterography
ECCO	European Crohn and Colitis Organization guidelines
<i>EH</i>	Endoscopic healing
<i>ERCP</i>	Endoscopic retrograde cholangiopancreatogram
<i>ESR</i>	Erythrocyte sedimentation rate
	Fecal calprotectin
	Inflammatory bowel disease
	Infliximab
	Interleukin-8
	Inter-quartile range
•	Mayo clinic score
	Mayo endoscopic score
	Mucosal healing

List of Abbreviations (Cont...)

Abb.	Full term
MRCP	Magnetic Resonance cholangio pancreaticography
MRI	Magnetic Resonance Imaging
<i>NLR</i>	Neutrophil-to-lymphocyte ratio
<i>NLR</i>	Neutrophil-to-lymphocyte ratio
NSAID	Non-steroidal anti-inflammatory drug
<i>PLR</i>	Platelet-to-lymphocyteratio
<i>PMBCs</i>	Peripheral blood mononuclear cells
QOL	Quality of life
<i>RA</i>	Rheumatoid arthritis
ROC	Receiver operating characteristic curve
TNFα	Tumor necrosis factor alpha
<i>UC</i>	
VTE	Venous thromboembolism
<i>WBC</i>	White blood cells

INTRODUCTION

The inflammatory bowel disease (IBD) comprises two types, namely, the ulcerative colitis (UC) and Crohn's disease (CD). They are a spectrum of chronic idiopathic autoimmune inflammatory disorders with remission and relapses, primarily affecting the gastrointestinal system (Machado et al., 2013).

IBD occur with different frequencies around the world. The countries reporting for the highest incidence of UC are the United States, the United Kingdom and Sweden, IBD have always seemed to be rare in the Middle East and Northern Africa. No accurate registry of patients had ever studied the exact prevalence of CD and UC in these populations. In Mediterranean countries, the prevalence of UC was estimated to be 5/100000 in urban areas (*Matsuoka et al.*, 2018).

UC is characterized by confluent mucosal inflammation and erosions starting from the anal verge and extending to a variable extent, where patients often complain of diarrhea associated with rectal bleeding, abdominal tenderness, and weight loss (El-Atrebi et al., 2021).

Etiopathogenesis of IBD comprises genetic components, environmental factors, microbial flora of the gut, and immune responses. However, the main mechanism seems to be the bacterial antigens gaining access to the antigen-presenting cells

through the impaired epithelial barrier (Ordás and Eckmann, 2012).

Ulcerative colitis (UC) is characterized by a neutrophilmediated inflammation of the gut. Indeed, European Crohn and Colitis Organization guidelines (ECCO) have highlighted how the grade of neutrophilic infiltration is necessary for the diagnosis of this pathological condition and for the evaluation of histological activity (Sandborn et al., 2015).

Thus, colonoscopy is necessary to collect mucosal biopsies and assess neutrophilic infiltration for the diagnosis and during follow-up to evaluate treatment response and predict long-term outcome, although histological healing is still debated. However, colonoscopy is an invasive, costly, and not always well-tolerated examination for patients (Mumolo et al., *2018*).

Apart from endoscopic interventions, disease severity can be also assessed using less-invasive biomarkers, including blood count, ESR, CRP and fecal calprotectin (Alexander et al., 2007).

In fact, systemic inflammation is characterized by a change in the levels of circulating white blood cells (WBC), and in particular it induces an increase in circulating neutrophils that is accompanied by a relative decrease in the percentages of lymphocytes (Gökmen et al., 2015).

In this regard, an increasing body of evidence has suggested that the neutrophil-to-lymphocyte ratio (NLR) can be a useful biomarker of many systemic inflammation responses and in the oncologic setting (Goodman et al., 2015).

There is also some evidence of a possible role of this simple biomarker in the UC setting, in particular concerning disease severity, but no sufficient studies have tested the value of this parameter in predicting therapeutic response to medical treatment (Torun et al., 2012).

Furthermore, the platelet-to-lymphocytes ratio (PLR) has recently been correlated to the prognosis of malignancies and to disease activity in rheumatologic diseases, but data on its role in UC patients are lacking (Zhang et al., 2018).

Medical therapy of IBD is complex as the disease multifactorial etiology is and the primary aim of pharmacotherapy is to dampen the generalized inflammatory response, thereby relieving symptoms. The specific goals of treatment in IBD include the control of acute exacerbation, maintenance of remission, treatment of specific complications, and surveillance of malignant transformation (Brunton et al., 2018).

Many drugs are used in the treatment of IBD including mesalamine derivatives, glucocorticoids and immunomodulators, in addition to the biologics that are derived partly or completely

from living biological sources such as animals and humans (D'Haens and Sartor, 2014).

The most widely used biologics are the TNF- α inhibitors such as adalimumab, certolizumab, golimumab, and infliximab, which are highly effective in the treatment of both UC and CD. The other biological agents in IBD include the integrin receptor antagonists, namely, vedolizumab and natalizumab, and IL-12 and IL-23 antagonist (Ustekinumab) (Chan et al., 2017).