

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

BEHAVIOR OF LINK SLAB BRIDGE GIRDERS WITH JOINTLESS DECK

By

Asmaa Sobhy Ibrahim Mostafa

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
Public Works

BEHAVIOR OF LINK SLAB BRIDGE GIRDERS WITH JOINTLESS DECK

By **Asmaa Sobhy Ibrahim Mostafa**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY in Public Works

Under the Supervision of

Prof. Dr. Laila Salah El-Din Radwan

Prof. Dr. Ahmed Atef Gadallah

Professor of Highway and Airport
Public Works Engineering
Faculty of Engineering, Cairo University

Professor of Highway and Airport Public Works Engineering Faculty of Engineering, Cairo University

Dr. Ahmed Sayed Abdelaaty Elmannaey

Assistant Professor of Construction Engineering Faculty of Engineering, Misr University for Science and Technology

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022

BEHAVIOR OF LINK SLAB BRIDGE GIRDERS WITH JOINTLESS DECK

By **Asmaa Sobhy Ibrahim Mostafa**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSOPHY**

in Public Works

Approved by the Examining Committee **Prof. Dr. Laila Salah El-Din Radwan**

Prof. Dr. Ahmed Atef Gadallah

Prof. Dr. Adel ElAttar

Prof. Dr. Omar Ali Mousa Elnawawy

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2022 **Engineer's Name:** Asmaa Sobhy Ibrahim Mustafa

Date of Birth:11/08/1986Nationality:Egyptian

E-mail: asmaa.mostafa@must.edu.eg

Phone: 01224335046
Address: Nasr City
Registration Date: 1/10/2013
Awarding Date:/.../.......

Degree: Doctor of Philosophy

Department: Public Works

Supervisors:

Prof. Dr. Laila Salah El-Din Radwan Prof. Dr. Ahmed Atef Gadallah

Dr. Ahmed Sayed Abdelaaty Elmannaey

Examiners:

Prof. Dr. Laila Salah El-Din Radwan Prof. Dr. Ahmed Atef Gadallah

Prof. Dr. Adel ElAttar

Prof. Dr. Omar Ali Mousa Elnawawy

(Professor of Structural Engineering, Ain Shams University)

Title of Thesis:

BEHAVIOR OF LINK SLAB BRIDGE GIRDERS WITH JOINTLESS DECK

Key Words:

Link Slab, Expansion Joint, Girder, ANSYS, Engineered Cementitious Composite.

Summary:

This study's main objective is to investigate the link slab's behavior on concrete bridge girders. Finite Element models were specifically developed using the ANSYS software package. A parametric study was performed using two-span bridge models with a link slab; this study included more than 500 models to thoroughly understand the link slab behavior. The current study focused on the following parameters; link slab thickness, length, debond zone, material type, and support condition) under live load, thermal load, and effect of the combination of strength and service limit state. Results showed that the link slab is generally subjected to negative moments at all support conditions under symmetric live loads. They were also straining actions in the link slab decrease with the increase of L.dz. The ECC material for the link slab is the optimum choice with partial thickness.

Disclaimer

I hereby declare that this thesis is my original work and that no part has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Asmaa Sobhy Ibrahim Mostafa	Date / /
Signature:	

Dedication

I would like to express my deepest gratitude and sincere appreciation to my supervisor, Associate Professor Ahmed Sayed Abdelaaty Elmannaey, for his guidance, support, and patience as a Ph.D. student. I sincerely thank him for making this work possible. With his knowledge, experience, and research capabilities, he continuously guided me toward completing this work.

Acknowledgments

In the beginning, I thank Allah Almighty for the many blessings that strengthen me to complete this research.

I wish to express my sincere appreciation to my thesis supervisor. Associate Professor. Dr. Ahmed Sayed Elmanney's support, time, and encouragement for this study. I would like to thank my supervisor members: Professor. Dr. Laila Salah El din Radwan and Professor. Dr. Ahmed Atef Gadallah.

I wish to express and record my most profound appreciation and great thanks to the Misr University for Science and Technology and all professors for giving me enough time to accomplish my thesis.

I want to thank my parents for their love, support, and understanding and for being there when times were rough. I would also like to thank my sisters for their love and support. Thanks are also extended to my friends for their encouragement and help.

Table of contents

Table of contents	vii
List of Tables	X
List of Figures	xii
Abstract	xvii
CHAPTER 1: Introduction	1
1.1. General Background	1
1.2. Problem Statement	2
1.3. Objectives and Scope	2
1.4. Organization of Thesis	
CHAPTER 2: Literature Review	
2.1. Introduction	4
2.2. Background	4
2.3. Problems associated with expansion joints	
2.3.1. Examples from the Egyptian society	6
2.4. Alternatives of jointless bridge	
2.4.1. Integral bridges	9
2.4.2. Jointless bridges deck	10
2.5. Link slab; an overview	15
2.5.1. Introduction	15
2.5.2. Existing design guidelines for ECC link slab	24
2.5.3. Engineered Cementitious Composite (ECC)	30
2.5.3.1 Material ingredients of ECC	33
2.5.3.1.1. Role of Fibers	33
2.5.3.1.2. Fly Ash	33
2.5.3.1.3. Role of Aggregates	34
2.6. Materials used in link slab	34
2.6.2. Fiber Reinforced Polymer (FRP) reinforcement	34
2.6.2.1 Tensile properties of the reinforcement rebar	36
2.7. Mechanical properties of ECC	37
2.7.1. Compressive strength	37
2.7.2. Flexural strength	37

2.8. Applications of ECC	38
CHAPTER 3: Current Study Bridge and Verification Model	40
3.1. Introduction	40
3.2. Current study bridge and link slab characteristics	40
3.2.1. Bridge and link slab geometry	40
3.2.2. Bridge and link slab loading	42
3.2.3. Bridge and link slab material properties	44
3.2.4. Bridge and link slab reinforcement	45
3.3. Verification model	49
3.3.1. Experimental model	49
3.3.2. Numerical model	50
CHAPTER 4: Finite Element Model and Parametric Study	56
4.1. Overview	56
4.2 Finite element modeling and analysis of the bridge under study	56
4.2.1. ANSYS elements used in this study	56
4.2.1.1. Element types	56
4.2.1.2. Real constants	59
4.2.1.3. Material properties	59
4.2.2. Bridge model geometry	63
4.2.3. Model loads	68
4.2.3.1. Live loads	68
4.2.3.2. Thermal loads	69
4.2.3.3. Load combinations	69
4.3. Parametric Study	71
CHAPTER 5: Finite Element Model Results and Discussion	74
5.1. Introduction	74
5.2. General behavior of link slab under (symmetric live loads)	74
5.3. Link slab thickness parameter	76
5.3.1. Full-depth link slab (ts= 9in (228.6mm))	76
5.3.2. Partial-depth link slab 2/3 from deck thickness (ts= 6in)	88
5.3.3. Partial-depth link slab (ts= 3in (76.2mm))	100
5.4. Brief of the finite element results under symmetric loads	112
5.5. Behavior of link slab under thermal load	113
5.5.1. Gradient thermal for the different material composition	113
5.5.3. Uniform thermal for the different material composition	117

5.6. Load results and application in ULS an	nd SLS combinations119
5.6.1. Full-depth link slab (ts= 9in (228.6mm	n))120
5.6.2. Partial-depth link slab (ts= 6in (76.2m	ım))121
5.6.3. Partial-depth link slab (ts= 3in (38.1m	m))122
5.7. Behavior of link slab under (Asymmetr	ric live loads)123
5.8. Effects of different girder types on link	c slab124
CHAPTER 6: Summary, Conclusions, and	Future Recommendations127
6.1. Summary	127
6.2. Conclusions	128
6.3 Recommendations for Further Research	1

List of Tables

Table 2.1: ECC mix design proportions by weight for ECC- M45	33
Table 2.2: Geometrical and mechanical properties of PVA fiber	33
Table 3.1: Characteristics of the selected bridges for this study	
Table 3.2: Section properties of AASHTO I – Beams	41
Table 3.3: Material properties used for bridges models	44
Table 3.4: Girder reinforcement	
Table 3.5: Girder prestressing characteristics	46
Table 3.6: Deck reinforcement	47
Table 3.7: Link slab reinforcement	47
a) Link slab reinforcement with thickness (t $_{1.s}$) = 9 in (228.6mm)	48
b) Link slab reinforcement with thickness (t $_{1.s}$) = 6 in (152.4mm)	48
c) Link slab reinforcement with thickness (t $_{l.s}$) = 3 in (76.2mm)	48
Table 3.8: Material properties for concrete element	52
Table 3.8: Material properties for steel element. Continued	53
Table 3.9: Comparison of test results with predictions by ANSYS program for	the
concrete bridge with HRRH support configuration	54
Table 4.1: Element types and its corresponding material for model	56
Table 4.2: Real constants for elements used in modelling	59
Table 4.3: Material properties for concrete element	. 61
Table 4.4: Material properties for steel element	62
Table 4.4: Continued	63
Table 4.5: Bridge model prestressing characteristics	64
Table 4.6: Geometry of link slab in bridge model	66
Table 4.7: Overlap between link slab and deck reinforcement in the transition zone	67
(a) Symmetric load case	68
(b) Asymmetric (Torsion) load case	68
Table 4.8: Proposed parameter for the parametric study for the link slab model	71
Table 4.9: Bearing configurations and corresponding support conditions	72
Table 4.10: Various bridge models according to link slab length and length of debone	ding
zone	
Table 4.11: Different Bridge models loading	73
Table 5.1 Summary of previous results	
Table 5.2: Moments and axial forces in the link slab for various support conditions un	nder
thermal gradient load for Full-depth link slab (ts= 9in (228.6mm))	113
Table 5.3: Moments and axial forces in the link slab for various support conditions un	
thermal gradient load for partial-depth link slab (ts= 6in (76.2 mm))	115
Table 5.4: Moments and axial forces in the link slab for various support conditions un	
thermal gradient load for Partial-depth link slab (ts= 3in (38.1mm))	116
Table 5.5: Moments and axial forces in the link slab under uniform thermal load for the	full-
depth link slab (ts= 9in (228.6mm))	117

Table 5.6: Moments and axial forces in the link slab under uniform thermal load for
partial-depth link slab (ts= 6in (76.2mm))
Table 5.7: Moments and axial forces in the link slab under uniform thermal load for
partial-depth link slab (ts= 3in (3 8. mm))
Table 5.8: Displacements under uniform thermal loads in the link slab for full depth link
slab (ts= 9in (228.6mm))
Table 5.9: Displacements under uniform thermal loads in the link slab for partial-depth
link slab (ts= 6in (76.2mm))
Table 5.10: Displacements under uniform thermal loads in the link slab for partial-depth
link slab (ts= 3in (38.1mm))
Table 5.11: Bending moments and axial forces under combined loading for RE and GE
link slab
Table 5.12: Moments and axial forces in the link slab under asymmetric live loads 123
Table 6.1: Selected parameters for existing bridges and new bridges

List of Figures

Figure 1.1: Deck joint replacement approach with link slabs	1
Figure 2.1: Bridges with expansion joints vs. Jointless bridges [20]	5
Figure 2.2: Examples of damage due to deterioration of expansion joints, a): in gird	lers
and pier caps with highly corroded steel bearings [23], b): in severely corroded expans	sion
joint seen from below [24] and c): in the pavement on top of expansion joint [23]	6
Figure 2.3.a: Abu El- Reesh Bridge	7
Figure 2.3.b: Hadaiq El Quba Bridge	7
Figure 2.3.c: El Marge Bridge	7
Figure 2.3.d: Six October Bridge	7
Figure 2.3: Examples of damage due to deterioration of expansion joints in Egypt	7
Figure 2.4: Different alternatives of joints in bridge systems [11]	8
Figure 2.5: Details of integral bridge	9
Figure 2.6: Types of integral abutment bridges [15]	9
Figure 2.7: jointless bridge decks vs. Conventional bridges [15]	
Figure 2.8.a: Independent back wall (deck slides over the back wall) [39]	. 11
Figure 2.8.b:Dependent back wall (deck-back wall combination slides over the abutme	ent)
[39]	. 11
Figure 2.9: Joint free bridge deck with link slab components [31]	. 12
Figure 2.10: Installation steps for new bridges	. 13
Figure 2.11: Rehabilitation steps for existing bridges	. 14
Figure 2.12: Deck continuous beam	. 15
Figure 2.13: Partially debonded continuous deck	. 16
Figure 2.14: Debonded, link slab configuration, tested by [5]	. 16
Figure 2.15: Link slab detail [37]	. 17
Figure 2.16: Force method for RHHR and HRRH Link Slab Bridge adopted from	[11
	. 18
Figure 2.17: ECC link slab configuration proposed by [42]	. 21
Figure 2.18: Idealized Elastic-Plastic Response of the ECC [48]	. 21
Figure 2.19: Comparison of schematic interface design in L.S between (a) convention	nal
method and (b) improved method [44]	
Figure 2.20: HPFRCC precast link slab tested in [49]	
Figure 2.21: GFRP link slab detail [50]	
Figure 2.22: Strain, stress distribution of ECC link slab for Non-linear sectional analysis	ysis
[48]	
Figure 2.23: Flow chart is to be used in conjunction with the step-by-step procedure	
ECC link slab design [43]	
Figure 2.24: ECC stress-strain response and crack width development under unia	
tension	
Figure 2.25: Ductile Response of ECC under Flexural Loading [56]	
Figure 2.26: Tensile Stress-Strain Curve and Crack Width Development [61]	. 32

Figure 2.27: Approximate stress-strain response ranges of various reinforcement ty	ypes
based on Model code 2010 [69]	35
Figure 2.28: Rebars tested in this study, GFRP and standard steel	35
Figure 2.29: Typical tensile stress-strain responses for bare GFRP- and steel rebars f	rom
direct tension testing [71]	36
Figure 2.30: ECC stress-strain response under uniaxial compression [79]	37
Figure 2.31: Examples of structural of SHCC /ECC: a) A continuous steel reinfo	rced
applications ECC link slab in Michigan 2005 [51]. b) The Mitaka Dam on Nishi-N	lomi
Island in Japan, where the upstream side of the dam was retrofitted with a thin overla	ıy of
ECC in [92]	39
Figure 2.32: Example of ECC used in steel reinforced dampers in high-rise reinfo	rced
concrete buildings in Tokyo and Yokohama in 2004 and 2005 [93, 94]	39
Figure 3.1: The Cross-Section of the Current Study Bridge	41
Figure 3.2: Typical Section Geometry of AASHTO I – Beams	41
Figure 3.3: Geometry of link slab	42
Figure 3.4: AASHTO (LRFD) load configuration of Highway Bridge	43
Figure 3.5: Material properties for current study bridge components	44
Figure 3.6: Girder cross-section reinforcement	45
Figure 3.7: Prestressing cables profile	46
Figure 3.8: Deck slab reinforcement	46
Figure 3.9: Reinforcement of link slab with different thicknesses	48
Figure 3.10: Setup of test bridge with link slab from Caner and Zia (1998)	50
Figure 3.11: Finite element model By ANSYS	51
Figure 3.12: All model reinforcement	53
Figure 3.13: Debond zone and overlap	
Figure 3.14: Link slab reinforcement stress	
Figure 3.15: Girder reinforcement stress at 33.8 kips	55
Figure 3.16: Link slab steel reinforcement at 37.5 kips	
Figure 3.17: Shear cracks on girder	55
Figure 4.1: The geometry for SOLID65 element	57
Figure 4.2: The geometry for SOLID45 element	57
Figure 4.3: Link8 geometry (ANSYS 12)	
Figure 4.4: Link10 geometry (ANSYS 12)	
Figure 4.5: The geometry, node locations, and the coordinate system for CONTA	
and TARGE170	
Figure 4.6: 3D Bridge model by ANSYS	
Figure 4.7: Lateral restrains of the deck	
Figure 4.8: Cables location in the bridge model	
Figure 4.9: Bridge model supporting zone	
Figure 4.10: Wheel load configuration	
Figure 4.11: Bridge model reinforcement	
Figure 4.12: Debond zone location	
Figure 4.13: Girder stirrups extended inside link slab	
Figure 4.14: Lap spliced between deck and link slab reinforcement	
Figure 4.15 Live loads used in the analysis	68