

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

AN INTEGRATED SIMULTANEOUS THERMAL AND RF ENERGY HARVESTING SYSTEM FOR WIRELESS SENSOR NETWORKS

By

Ahmed Abdulraouf Awad Ahmed Helaly

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

AN INTEGRATED SIMULTANEOUS THERMAL AND RF ENERGY HARVESTING SYSTEM FOR WIRELESS SENSOR NETWORKS

By

Ahmed Abdulraouf Awad Ahmed Helaly

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Dr. Ahmed N. Mohieldin

Dr. Mohamed F. Abuelyazeed

Professor

Professor

Faculty of Engineering, Cairo University

Faculty of Engineering, Cairo University

AN INTEGRATED SIMULTANEOUS THERMAL AND RF ENERGY HARVESTING SYSTEM FOR WIRELESS SENSOR NETWORKS

By

Ahmed Abdulraouf Awad Ahmed Helaly

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

in

Electronics and Communications Engineering

Dr. Ahmed N. Mohieldin,

Thesis Main Advisor

Dr. Mohamed F. AbuElyazeed,

Thesis Advisor

Dr. Mohamed Yousef Abdallah,

Internal Examiner

External Examiner

Faculty of Engineering, Ain Shams University

Dr. Sameh Assem Ibrahim,

Professor

Approved by the Examining Committee:

FACULTY OF ENGINEERING ,CAIRO UNIVERSITY GIZA,EGYPT 2022 **Engineer's Name:** Ahmed Abdulraouf Awad Ahmed Helaly

Date of Birth: 04/06/1995 **Nationality:** Egyptian

E-mail: araouf@eng.cu.edu.eg

Phone: 01010447316

Address: First District, 6th of October, Giza, 12573

Registration Date: 01/10/2018 **Awarding Date:** -/-/2022

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Dr. Ahmed N. Mohieldin Dr. Mohamed F. Abuelyazeed

Examiners:

Dr. Ahmed N. Mohieldin (Thesis Main Advisor)
Dr. Mohamed F. AbuElyazeed (Thesis Advisor)
Dr. Mohamed Yousef Abdallah
Dr. Sameh Assem Ibrahim (External Examiner)

Professor

Faculty of Engineering, Ain Shams University

Title of Thesis:

An Integrated Simultaneous Thermal and RF Energy Harvesting System for Wireless Sensor Networks

Key Words:

Energy Harvesting; charge pump; maximum power point tracking; power combining; wireless sensor networks

Summary:

This work presents an integrated simultaneous thermal/RF energy harvesting system that is suitable for low power wireless sensor networks. The system has the ability to combine harvested energy from both DC and AC sources at the same time and provide a regulated output voltage of 1.75V feeding a current load from 0.15 mA to 0.77 mA. A triple mode maximum power point tracking (MPPT) algorithm is implemented to achieve the best possible efficiency at different source and load conditions. The three reconfigurable parameters in the system are the number of stages of the DC path, the frequency driving the charge pump, and the capacitors of the matching network in the RF-path. The energy harvester also enables the storage of extra power by charging a supercapacitor in order to use it during power shortage periods. The supercapacitor is charged using a voltage doubler that has an output of 3.5V. The system is implemented in a 180 nm CMOS technology and utilizes a total on-chip capacitance of 2.4 nF. Simulations show that the overall end-to-end efficiency of the system reaches a maximum of 60.5% at input thermal voltage of 350mV and RF input power of -8 dBmW.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ahmed Abdulraouf Awad Ahmed Helaly	Date:
Signature:	

Acknowledgements

I would like to express my sincere gratitude to my advisors, Dr. Ahmed Nader and Dr. Mohamed Fathy for their wise guidance and invaluable suggestions to this work. Their passion and dedicated involvement have inspired me a lot on both technical and personal levels.

I would also like to thank my family and friends for their endless support throughout the period of completing this work .

Table of Contents

Di	isclair	er	i
A	cknov	edgements	ii
Ta	ble o	Contents	iii
Li	st of '	ables	vi
Li	st of l	igures	vii
Li	st of S	ymbols and Abbreviations	xi
Li	st of l	ublications	xiii
Al	bstrac		xiv
1	INT	RODUCTION	1
	1.1	Motivation	1
		1.1.1 Thermoelectric Generator	1
		1.1.2 RF Transducer	3
		1.1.3 Piezoelectric Transducer	3
		1.1.4 Photovoltaic Transducer	4
	1.2	Energy Harvesting Systems Characteristics	5
	1.3	Thesis Objective	5
	1.4	Thesis Outline	6
2	LIT	RATURE REVIEW	7
	2.1	Charge Pump Design	7
		2.1.1 Parallel-Series Charge Pump	7
		2.1.2 Fibonacci Charge Pump	8
		2.1.3 Dickson Charge Pump	9
		2.1.4 Pelliconi Charge Pump	10
		2.1.4.1 Pelliconi Charge Pump Theory of Operation	11

			2.1.4.2 Pelliconi Charge Pump Governing Equations	12
			2.1.4.3 Pelliconi Structure as a Rectifier	14
	2.2	Hybrid	d Energy Harvesting Systems	18
		2.2.1	Ultra Low Power On-Chip Hybrid Start-Up Energy Harvesting	
			System	19
		2.2.2	Platform Architecture for Solar, Thermal, and Vibration Energy	
			Combining With Single Inductor	20
		2.2.3	Simultaneous Multi-Source Integrated Energy Harvesting System	
			for IoE Applications	21
		2.2.4	A Hybrid Energy Harvesting System With Rectifying-Combination	
			and Improved Fractional-OCV MPPT Method	22
	2.3	Literat	ture Review Conclusion	23
3	PRO	POSE	D SYSTEM	2 4
	3.1	Systen	n Overview	25
	3.2	Systen	n Detailed Top Level Implementation	26
		3.2.1	MPPT FSM Algorithm	27
			3.2.1.1 Number of Charge Pump Stages	27
			3.2.1.2 DCO Frequency	29
			3.2.1.3 Matching Network Capacitance	31
		3.2.2	Output Regulation	33
		3.2.3	Storage Controller	33
4	CIR	CUIT I	IMPLEMENTATION AND RESULTS	35
	4.1	Charge	e Pump Implementation	35
		4.1.1	Charge Pump Stage	36
		4.1.2	Inter-Stage Switches	39
	4.2	Outpu	t Sampling Circuit Implementation	39
		4.2.1	Output Sampling Circuit Comparator	40
	4.3	Rectifi	er and Matching Network Implementation	45
	4.4	DCO I	Implementation	50
5	SYS	TEM I	NTEGRATION	56
	5.1	Integra	ated System Simulations	57

Re	feren	ces		73
	6.2	Future	Work	72
	6.1	Conclu	sion	71
6	CON	NCLUS	ION AND FUTURE WORK	7 1
	5.3	Compa	rison with the state-of-the-art projects	68
		5.2.6	Top Level Layout	
		5.2.5	Rectifier and Matching Network Layout	68
		5.2.4	Output Regulation Circuitry Layout	65
		5.2.3	DCO Layout	65
		5.2.2	Output Sampling Circuit Layout	65
		5.2.1	Charge Pump Layout	64
	5.2	System	n Layout	64
		5.1.4	End to End Efficiency of the Overall System	62
		5.1.3	Output Regulation and Storage Controller	61
		5.1.2	MPPT FSM Performance Verification	57
		5.1.1	Transient Analysis of the Integrated System	57

List of Tables

3.1	Output Regulation Logic Truth Table
4.1	Charge Pump Bypass Logic Table
4.2	Charge Pump ENABLE Logic Table
4.3	Rectifier Simulation Results for Different Sizing
4.4	Binary to Thermometer Coding for the 3 MSBs of the DCO
5.1	Comparison with the-state-of-the-art Multi-Source Energy Harvesting
	Systems

List of Figures

1.1	Physical model for a Thermoelectric generator [8]	2
1.2	Circuit model for a Thermoelectric generator	2
1.3	Basic Block Diagram for RF Transducer	3
1.4	Photovoltaic Cell Output Power vs Output Voltage for Different Illumina-	
	tions [11]	4
2.1	Parallel-Series Charge Pump Structure	8
2.2	Fibonacci Charge Pump Structure	9
2.3	Dickson Charge Pump Basic Structure	9
2.4	Dickson Charge Pump MOS-Based Structure	10
2.5	Pelliconi Charge Pump as a Boosting DC-DC Converter	11
2.6	Pelliconi Charge Pump as a Boosting DC-DC Converter during $\phi 1 \ldots$	12
2.7	Pelliconi Charge Pump as a Boosting DC-DC Converter during $\phi 2$	13
2.8	Coth Function Response	14
2.9	Pelliconi Structure Operating as a Rectifier	15
2.10	Pelliconi Rectifier with a Boost Converter Setup	17
2.11	Waveforms of Rectifier Intermediate and Output Nodes	17
2.12	RF Chain for Energy Harvesting	18
2.13	Architecture of Hybrid Start-up Block Composed of Solar and RF Energy	
	Harvesters	19
2.14	Basic Diagram of Several Energy Sources Harvesting Utilizing a Single	
	Inductor	20
2.15	Block diagram of Simultaneous Multi-Source Integrated Energy Harvest-	
	ing System	21
2.16	Implementation of Boost Converter Using Reconfigurable Dickson Charge	
	Pump	21
2.17	Complete schematic of the Circuit Interface for the Thermal/RF Hybrid	
	Harvesting	22
3 1	Basic Block Diagram of the Proposed System	26
$_{J.1}$	Duble Diock Diagram of the Froposca bystem	∠∪

3.2	Detailed implementation of the proposed system	27
3.3	Vout Variation for Different N Values for Iout=0.5mA and Iout=0.4 mA $$.	29
3.4	Flow Chart Diagram for Number of Stages Optimization	30
3.5	Rin Variation with switching frequency for N=4 and Vs= $0.8V$	31
3.6	Matching Network Implementation	32
3.7	Output Voltage Regulation Loop	34
3.8	Storage Controller Circuit Diagram	34
4.1	Proposed Five Stage Pelliconi Charge Pump	36
4.2	Efficiency of the Charge Pump under Different MOS Devices Sizing	38
4.3	Bootstrapped Switch used for the implementation of inter-stage switches .	40
4.4	Output Sampling Circuit Implementation	41
4.5	Output Sampling Comparator Implementation	42
4.6	SR Latch Implementation	42
4.7	Simulation Results of the Comparator with Input Test Signal between	
	800 mV and $900 mV$	43
4.8	Zoomed Version of the Simulation Results of the Comparator with Input	
	Test Signal between 800mV and 900mV	43
4.9	Post Layout Delay of the Comparator across Temperature for Extreme	
	Corners	44
4.10	Post Layout Current Consumption of the Comparator across Temperature	
	for Extreme Corners	44
4.11	Post Layout Monte Carlo Simulation Results for the Input Referred Offset	
	of the Comparator	45
4.12	Matching of the Rectifier with the Antenna Impedance on Smith Chart	47
4.13	Transient Analysis of the Rectifier with the Matching Network. The red	
	and blue signals are the input and output signals to the matching network	
	respectively. The black signal is the output of the rectifier	48
4.14	Zoomed Version of the Transient Analysis of the Rectifier with the Match-	
	ing Network	48
4.15	Matching of the Rectifier Impedance before Capacitance Adjustment when	
	Rectifier Voltage is 1V	49

4.10	Matching of the Rectifier Impedance after Capacitance Adjustment when	
	Rectifier Voltage is 1V	50
4.17	Matching of the Rectifier Impedance before Capacitance Adjustment when	
	Rectifier Voltage is 1.2V	51
4.18	Matching of the Rectifier Impedance after Capacitance Adjustment when	
	Rectifier Voltage is 1.2V	51
4.19	Current Steering DAC of the Implemented DCO	53
4.20	Three Stage Current Starved DCO Implementation	54
4.21	DCO Frequency against Different DCO Digital Words	54
4.22	Total DCO Current Consumption (Analog and Digital parts) against Dif-	
	ferent DCO Digital Words	54
4.23	MOSCAP Capacitance at Extreme Corners	55
4.24	Non Overlapping Circuit to generate Charge Pump Clock Signals	55
4.25	Simulation of the Non Overlapping Circuit at highest frequency	55
5.1	Transient Simulation of the Overall System	58
5.2	Simulation of the MPPT FSM performance for Adjusting Charge Pump	
	Number of Stages	58
5.3	Simulation of the MPPT FSM performance for adjusting Charge Pump	
	Switching Frequency	59
5.4	Charge Pump Input Voltage Variations during the Frequency Adjustment	
	Process	60
5.5	Simulation of the MPPT FSM performance for adjusting Matching Net-	
	work Capacitors	60
5.6	Output Voltage increases by about 25 mV upon Matching Network Capac-	
	itance Adjustment	61
5.7	Simulation Results of the Output Regulation with the Storage Controller	
	Enable	61
5.8	Output Regulation with the Storage Controller Enable and VSC	62
5.9	End-to-end efficiency of the proposed system against V_{DC} at different P_{RF}	63
5.10	End-to-end efficiency of the proposed system against P_{RF} at different V_{DC}	63
5.11	Charge Pump Layout	64
5.12	Output Sampling Circuit Layout	65

5.13	Strong Arm Comparator Layout	66
5.14	Current Steering DAC Layout	66
5.15	Digitally Controlled Oscillator Layout	67
5.16	Regulation Circuitry Layout	67
5.17	Rectifier and Matching Network Layout	68
5.18	Top Level Layout	70