

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

CORRELATION OF INTRAVENOUS VITAMIN C INJECTION AND PLASMA ALBUMIN LEVEL IN BURNT RATS (EXPIRAMENTAL ANIMAL STUDY)

A thesis

Submitted for Partial Fulfillment of Master Degree in Plastic and Maxillofacial Surgery

By

Aya Ibrahim Abdullah Khalifa Dief

(M.B.B.Ch)

Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Ashraf Maher Farid

Professor of Plastic and Maxillofacial Surgery Faculty of Medicine – Ain Shams University

Prof. Dr. Ibrahim Hussein Kamel

Professor of Plastic and Maxillofacial Surgery Faculty of Medicine- Ain Shams University

Dr. Ebrahim Mohamed Amin

Lecturer of Plastic and Maxillofacial Surgery Faculty of Medicine- Ain Shams University

> Faculty of Medicine Ain Shams University 2020

Acknowledgment

First and foremost, I feel always indebted to **ALLAH**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Ashraf Maher Farid,** Professor of Plastic and Maxillofacial Surgery Faculty of Medicine—— Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Ibrahim Hussein Kamel,**Professor of Plastic and Maxillofacial Surgery Faculty of Medicine— Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Ebrahim Mohamed Amin,** Lecturer of Plastic and Maxillofacial Surgery

Faculty of Medicine– Ain Shams University, for his great help, active participation and guidance.

Aya Ibrahim

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
Introduction	1
Aim of the Work	3
Review of Literature	
Pathophysiology of Thermal Injury	4
Burn Shock Resuscitation	22
Vitamin C	33
Materials and Methods	38
Results	44
Discussion	54
Limitation of the Study	57
Conclusion	58
Recommendations	59
Summary	60
References	62
Arabic Summary	

List of Tables

Table No.	Title	Page 1	Vo.
Table (1):	Kidney Disease: Improving Outcomes		17
Table (2):	Group A (Blue group)		44
Table (3):	Group B (Red group):		45
Table (4):	Comparison between Blue rats ground Red rats group regarding Albumin Before Burn, Post burn 8h and Post 24h	level t burn	45
Table (5):	Comparison between Blue rats group Red rats group regarding Total prolevel Before Burn, 8h Post burn and Post burn	roteins ad 24h	47
Table (6):	Comparison between Albumin level is rats group Before Burn, Post burn 8 Post burn 24h.	3h and	49
Table (7):	Comparison between Total proteins le Blue rats group Before Burn, Post be and Post burn 24h	urn 8h	50
Table (8):	Comparison between Before Burn and burn 8h Regarding Albumin level and proteins level in Red rats group	l Total	51
Table (9):	Comparison between the two studied regarding albumin and total protein hours post-burn	drop 8	53

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Zones of thermal injury	7
Figure (2):	Four phases of natural wound healing	ıg8
Figure (3):	Events leading to sepsis and mu organ failure following burn injury	-
Figure (4):	Hypermetabolic state in burn injury	21
Figure (5):	The classic Starling equation microvascular forces	
Figure (6):	Red group before burn	40
Figure (7):	Blue rats before burn	40
Figure (8):	Red group after burn	41
Figure (9):	Blue group after burn	41
Figure (10):	Rat number 3 of the red group befor after burn	
Figure (11):	Shows there is no difference beto (Blue rats group and Red rats gregarding Albumin level Before burn Post burn 8h	group) n and
Figure (12):	Shows there is no difference beto (Blue rats group and Red rats gregarding Total proteins level Eburn and 8h Post burn	roup) Before
Figure (13):	Shows there is highly statist significant difference between Alb level Before Burn, Post Burn 8h and burn 24 h	oumin l Post
Figure (14):	Shows there is highly statist significant difference between proteins level before burn, 8h post and 24 h post burn.	total burn

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (15):	Shows there is highly statis significant difference between proteins level Before Burn and 8h Burn.	Total n Post
Figure (16):	Shows there is highly statis significant difference between proteins level Before Burn and 8h Burn.	Total n Post
Figure (17):	Comparison between the two sigroups regarding albumin and protein drop 8 hours post-burn	total

List of Abbreviations

Abb.	Full term
6S	. The Scandinavian Starch for Severe Sepsis/Septic Shock
AA	. Ascorbic acid
ABA	. The American Burn Association
ACS	. Abdominal compartment syndrome
AKI	. Acute kidney injury
ALBIOS	. Albumin Italian Outcome Sepsis
ARDS	. Acute respiratory distress syndrome
Bpm	. Beats per minute
CHEST	. Crystalloid versus Hydroxyethyl Starch
Co	. Carbon monoxide
CRISTAL	. Colloiods versus Crystalloids for Resuscitation of Critically Ill patients
CT	. Computed tomography
DAMPs	. Damage Associated Molecular Patterns
FiO2	. Fraction of inspired oxygen;
GFR	. Glomerular filtration rate
HAM	. Human amniotic membrane
НВО	. Hyperbaric oxygen
HSA	. Human serum albumin
IAH	. Intra-abdominal hypertension
IAP	. Intra-abdominal pressure
ICU	. Intensive care unit
IGF-1	Insulin-like growth factor 1
IL	. Interleukin
IVF	. Intravenous fluid

List of Abbreviations Cont...

Abb. Full term
KDIGO Kidney Disease: Improving Global Outcomes
LPS Lipopolysaccharide
MAP Mean Arterial Pressure
$NADPH \ \\ Nicotinamide \ adinadin \ dinucleotide \ phosphate$
NF-κB Nuclear Factor kappa B
NLR NOD Like Receptors
NOD Nucleotide oligomerization domain
NOS Nitric oxide synthase
O2 Oxygen
PAMPs Pathogen Associated Molecular Patterns
PaO2 Partial pressure of arterial oxygen
POC Point of care
PVR Peripheral vascular resistance
qSOFAQuick SOFA.
ROS Reactive oxygen species
RRTRenal replacement therapy
SOFA Sequential Organ Failure Assessment
SVR Systemic vascular resistance
TBSA Total body surface area
TLRs Toll-like receptors
TNF Tumor Necrosis Factor
WHO World Health Organization
XOXanthine oxidase

Introduction

urn is tissue injury caused by heat, radiation, electricity, contact with hot objects or chemicals. It's a global public health problem accounting for an estimated 180000 death annually according to WHO. Non fatal burns are a leading cause of morbidity including prolonged hospitalization ending with disfigurement and disability. The majority of burns occur in middle and lower income areas (James et al., 2019).

Burn is considered a post-traumatic inflammatory disease that causes infection and damage to both local and distant tissues. Tissues respond to burn injury by releasing inflammatory mediators resulting in increased vascular permeability. This leads to shift of intravascular fluid and plasma proteins into the interstitial space resulting in decreased capillary oncotic pressure. The newly extravasated proteins create an osmotic gradient that pulls additional fluid into the interstitial space resulting in edema formation. The peak of edema occurs in the first 8 hours post burn injury thus, those 8 hours are critical in resuscitation of burn patients (*Li et al.*, 2018).

Albumin is an exclusive intravascular protein that plays a significant role in our lives. In addition to the key role in the balance of the oncotic pressure, endogenous substances and drugs are transported by binding to albumin. It is also thought that it plays an antioxidant function. Due to this clinical potential, albumin replacement is applied as a volume expander

in burn shock resuscitation and to correct hypoalbuminemia in the chronic period (Cakırca et al., 2019).

Ascorbic acid or Vitamin C is a water-soluble micronutrient required for various biological functions. It acts as a cofactor in enzymatic reactions such as collagen synthesis and deposition in vascular endothelium. Vitamin C is also an important antioxidant, eliminating free radicals released from burnt tissues. In addition to that, previous studies have demonstrated the fluid saving effect of high-dose vitamin C (Rizzo et al., 2016).

AIM OF THE WORK

Testing the effect of intravenous vitamin C injection on plasma albumin level in burnt rats.