

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

STUDIES ON SOME IMMUNE AND PRODUCTIVE PERFORMANCE OF SOME LOCAL AND ADAPTED STRAINS USING MODERN SNAPS TECHNIQUES

By

HABIBA HASSAN REZK MAHMOUD

B. Sc. Agric. Sc. (Poultry Production), Faculty of Agriculture, Ain Shams University, 2013 M. Sc. Agric. Sc. (Poultry Production), Faculty of Agriculture, Ain Shams University, 2018

A Thesis Submitted in Partial Fulfillment Of The Requirements for the Degree of

in
Agricultural sciences
(Poultry Breeding)

Department of poultry production Faculty of Agriculture Ain Shams University

Approval Sheet

STUDIES ON SOME IMMUNE AND PRODUCTIVE PERFORMANCE OF SOME LOCAL AND ADAPTED STRAINS USING MODERN SNAPS TECHNIQUES

By

HABIBA HASSAN REZK MAHMOUD

B. Sc. Agric. Sc. (Poultry Production), Fac. of Agric., Ain Shams Univ., 2013 M. Sc. Agric. Sc. (Poultry Production), Fac. of Agric., Ain Shams Univ., 2018

This thesis for PHD. degree has been approved by:

Dr.	Hassan Hassan Abdallah Younis
	Prof. of Poultry Breeding, Faculty of Agriculture, vice president o
	post graduate studies and research Kafrelsheikh University.
Dr.	A.Zein El-Dein Hassan Farag
	Prof. Emeritus of Poultry Breeding, Faculty of Agriculture, Ain Shams University.
Dr.	Ahmed Galal EL-Sayed Gad
	Prof. of Poultry Breeding, Dean Faculty of Agriculture, Ain Sham
	University.
Dr.	Hassan E. Ayoub
	Prof. Emeritus of Poultry Breeding, Faculty of Agriculture, Ain
	Shams University.

Date of Examination: $17 \setminus 8 \setminus 2022$

STUDIES ON SOME IMMUNE AND PRODUCTIVE PERFORMANCE OF SOME LOCAL AND ADAPTED STRAINS USING MODERN SNAPS TECHNIQUES

By

HABIBA HASSAN REZK MAHMOUD

B. Sc. Agric. Sc. (Poultry Production), Faculty of Agriculture, Ain Shams University, 2013 M. Sc. Agric. Sc. (Poultry Production), Faculty of Agriculture, Ain Shams University, 2018

Under the supervision of:

Dr. Hassan EL-Sayed Ayoub

Prof. Emeritus of Poultry Breeding, Department of poultry production, Faculty of Agriculture, Ain Shams University

Dr. Ahmed Galal EL-Sayed Gad

Prof. of Poultry Breeding, Department of poultry production, Faculty of Agriculture, Ain Shams University

Dr. Lamiaa Mostafa Radwan

Prof. of Poultry Breeding, Department of poultry production, Faculty of Agriculture, Ain Shams University

ABSTRACT

HABIBA HASSAN REZK. Studies on some immune and productive performance of some local and adapted strains using modern snaps techniques. Unpublished PhD in Philosophy, Ain Shams University, Faculty of Agriculture, Department of Poultry Production, Egypt, 2022.

This experiment was designed to evaluating some productive traits and immune traits of Baladi chickens under heat stress condition and description of Baladi chickens genetically by using modern techniques.

Main results could be summarized as follows:

- Growth characteristics (body weight and body measurement) reflect that males of baladi chickens were significantly heavier than their counterparts at different ages. Also, the heat treatment group induced a significant decrease in body weight compared with the control treatment group for both sexes in parents stock.so, in offspring stock. And, heat treatment induced a significant decrease compared with control group in body weight trait. Also, heat treatment induced a significant decrease compared with control group in all body measurements(shank length, tibia length, body depth, keel length, comb length and wattle length)
- Feed consumption and feed conversion ratio of baladi chickens recorded at 8-12 weeks of age. The present result showed that the Baladi chickens that was exposed to heat stress significantly consumed less feed from 8 to 12 days of age compared to the control treatment group.
- Phenotypic, the results showed that in the parent stock, at one day of age, orange color (light brown) was the dominant color among the colors within the stock 32% of the all stock, and at the age of 4 weeks, the orange color also appeared to be the dominant color among the colors by 35%. But, the results showed that in offsprings stock, at one day of age, orange color (light brown) was the dominant color among the colors within the stock 40% of the all stock, and at the age of 4

weeks, the orange color also appeared to be the dominant color among the colors by 65%.

- Heat stress measurements (Respiratory rate and rectal temperature) Shows that rectal temperature and respiration rate were significantly higher for the group exposed to heat stress than for the control group for parent stock, in offspring, Shows that rectal temperature and respiration rate were significantly higher for the group exposed to heat stress than for the control group.
- Maturation characters (body weight and body measurements) the results showed that body measurements of sexual maturity were no significantly in all traits (Shank length, Tibia length, Body depth, Keel length, Comb length and Wattle length).
- Production traits (egg weight, egg mass, egg number and egg production percent) the results showed that there is no significant difference between heat treatment and control treatment in the egg number trait. As, in egg mass trait, it was found that the heat treatment was significantly higher than the control treatment in 30 and 90 days of age. But a difference appeared in 150 days of age, where it was found that the control treatment was significantly higher than the heat treatments.
- Internal and external egg quality indicated Show that the effect of significant on the treatment.
- Immunity traits: the antibody titer was higher in control group compared with heat stress group. This shows that immunity is affected under heat stress compared to the control group and exposure to heat stress.
- The gene expression level of CD1b gene and IL4I1 gene expression were highly significant in the control group compared with the heat group.

Key words: Heat stress, baladi free chicken, ELISA, SNAPs, RNA extraction, egg production, egg quality, CD1b gene and IL4I1 gene.

ACKNOWLEDGMENTS

I wish to express my deepest gratitude to **Prof. Dr. H. Ayoub** professor Emeritus of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his constructive guidance, valuable advice, revising the manuscript and continues supporting during this study. And, his valuable feed during this breeding.

I wish to express my deepest gratitude to **Prof. Dr. A.Zein El-Dein** professor Emeritus of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for his constructive guidance, valuable advice, revising the manuscript and continues supporting during this study.

Special acknowledgments and deep grateful to **Prof. Dr. A. Galal,** professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University for supporting me in many ways during this study. To support me financially from the beginning of the experiment to its end, as well as morally support and follow-up to me constantly during this study.

I wish to express my sincere gratitude to **Prof. Dr.Lamiaa. M. Radwan,** professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University, encouragement, valuable advice, and remote revising the manuscript.

I wish to express my sincere gratitude to **Prof. Dr.Mahmoud Youssef mahrous,** professor of Poultry Breeding, Poultry Production Department, Faculty of Agriculture, Ain Shams University, encouragement, valuable advice.

My sincere gratitude and sincere thanks to **Dr.Ashraf fawzy syouh**, Faculty of Veterinary Medicine - Zagazig University.

I would like to express all my sincere gratitude and unlimited love to my husband (**Abdallah aziz**). Also, I would like to express all my sincere

gratitude and unlimited love to my **father**, **mother**, **sisters** and **brothers** for their patience, continual encouragement and love.

CONTENTS

TITLE	Page
List of tables	Vi
List of figures	Vii
INTRODUCTION	1
REVIEW OF LITERATURE	3
1. Definition of Baladi free chickens	7
2. Effect of heat stress on productive performance of chickens	7
2.1. Body weight	11
2.2. Body measurements	14
2.2.1. Keel length	14
2.2.2. Shank length	14
2.2.3. Body depth	15
2.2. 4. Tibia length	15
2.2. 5. Comb and wattle length	16
2.3. Feed consumption and feed conversion ratio	18
3. Phenotypic traits	22
4. Effect of heat stress on physiological responses	22
4.1. Thermal reaction	27
4.1.1. Respiratory rate	28
4.1.2. Rectal temperature	29
5. Laying performance under heat stress	29
5.2. Egg production measurements under heat stress	34
5.2.1. Egg number, Egg weight and egg mass	36
5.3. Egg quality measurements under heat stress	37
5.3.1. External egg quality	37
5.3.1.1. Shell thickness	37
5.3.1.2. Shell percentage	38
5.3.1.3. Egg area	38
5.3.1.4. Egg shape index	20
5.3.1.5. Shell index	39 39
	0,

5.3.1.6. Egg volume	39
5.3.1.7. Shell strength	40
5.3.2. Internal egg quality measurements	40
5.3.2.1. Yolk quality	41
5.3.2.2. Albumin quality	41
5.3.2.3. Haugh units	42
6. Newcastle disease virus (NDV)	46
7. Immune Responses	49
7.1Elisa (enzyme-linked immunosorbent assay) for Newcastle	52
disease	
8. Relation between immune and heat stress	53
.9. Genetics studies	54
9.1. RNA extraction.	
9.2. Genes responsible for immunity	55 55
9.2.1. CD1b gene	56
9.2.2. IL4I1 (Interleukin 4 inducible 1 gene)	56
MATERIALS AND METHODS	50 57
1. Experimental designs	
1.1.Parent stock	57 57
1.2.Offspring flock	58
2.Measurements and observations	
2.1.Body weight.	58 58
2.1.1.Parent stock.	58
2.1.2. Offspring flock.	
.22 .Body measurements.	58
2.2.1.Parent stock	58 59
2.2.2.Offspring flock	
2.3. Feed consumption.	59
2.4. Phenotypic triats	59 59
2.5. Respiratory rate and rectal temperature	60
.27. Egg production parameters	
.27. 255 production parameters	60

2.8. Egg quality measurements	60
2.8.1. External egg quality	60
2.8.1.1. Strength of eggshell	61
2.8.1.2. Shell thickness	61
2.8.1.3. Shell percentage	61
2.8.1.4. Egg area	61
2.8.1.5. Egg shape index	61
2.8.1.6. Shell index	~1
2.8.1.7. Egg volume	61 62
2.8.2. Internal egg quality	62
2.8.2.1. Albumen quality	
2.8.2.2. Albumen weight and albumen percentage	62 62
2.8.2.3. Yolk quality	63
2.8.2.4. Yolk weight and yolk percentage	
3. Immune Responses Evaluation	63
3.1. Indirect ELISA	63 63
4. Genetics studies	63
4.1. RNA extraction.	
5. Statistical analysis	64 64
RESULTS AND DISCUSSION	66
1. Productive traits.	
1.1. Parent stock.	66
1.1.1. Body weight	66 66
1.1.2. Body measurements	00
1.1.2.1. Shank length.	67
1.1.2.2. Tibia length	67 68
1.1.2.3. Keel length	69
	0,7
1.1.2.4. Body depth	69
1.1.2.5. Comb length	69 70
1.1.2.6. Wattle length	70
1.1.3. Feed consumption.	72
1.1.4. Phenotypic traits	73

1.1.5. Heat stress exposure.	74
1.1.6. Maturation measurements	76
2. Laying performance	78
2.1. parent stock	78
2.1.1. Egg production measurements during the first 30 day and 90	78
day and 150 day of production	
2.1.2. Egg quality measurements	
2.1.2.1. External egg quality	80
2.1.2.1.1. Egg shape index	80
2.1.2.1.2. Egg volume	80
2.1.2.1.3. Shell strength	
2.1.2.1.4. Shell thickness.	80 80
2.1.2.1.5. Wet shell weight and percentage	80
2.1.2.1.6. Dry shell weight and percentage	80
2.1.2.1.7. Shell index	0.0
2.1.2.2. Internal egg quality	80 81
2.1.2.2.1. Egg Weight	81
.2.1.2.2.2. Haugh units	
.2.1.2.2.3.Yolk index	81 81
.2.1.2.2.4 Albumin weight and percentage	81
2.1.2.2.5. Yolk weight and percentage	81
1.2. Off spring flock	82
1.2.1. Body weight	83 83
1.2.2. Body measurements	0.5
1.2.2.1. Shank length	84
1.2.2.2. Tibia length	84
1.2.2.3. Keel length	85
	85
1.2.2.4. Body depth	85
1.2.2.5. Comb length	86
1.2.2.6. Wattle length	86
1.2.3. Feed consumption.	88
1.2.4. Phenotypic traits	89

1.2.5. Heat stress exposure	90
3. Immune Responses Evaluation	92
.4.Genetics studies	92
.4.1.RNA extraction.	92
4.1.1. Gene expression for immune genes	92
SUMMARY AND CONCLUSION	94
REFERENCES	98
ARARIC SUMMARY	

LIST OF TABLES

Table		Page
1.	Primers used for the RT-qPCR	64
2.	Means±SE of effect of sex, age and treatment and their interaction of body weight for baladi chickens parents	67
3.	Means±SE of effect of age and treatment and their interaction	71
4.	on body measurements for baladi chickens parents Means±SE of effect of treatment on feed consumption for baladi chickens parents.	72
5.	Means±SE of effect of treatment and age on Heat stress	75
6.	measurements for baladi chickens parents Means±SE of effect of treatment on of maturation measurements for baladi chickens parents	77
7.	Means±SE of effect treatment on of external egg quality (measurements for Baladi chickens parents (29 Week	82
8.	Means±SE of effect treatment on of Internal egg quality measurements for Baladi chickens parents (29 Week).	83
9.	Means±SE of effect of sex, age, treatment and their interaction of body weight for baladi chickens offspring generation	84
10.	Means±SE of effect of age and treatment and their interaction of Body measurements for baladi chickens offspring generation	87
11.	Means±SE of effect of age and treatment and their interaction on heat stress measurements for baladi chickens offspring	90
12.	Means±SE of effect of treatment on Newcastle diseases indirect for baladi chickens offspring (16 week).	91

LIST OF FIGURES

Figure		Page
1	Phenotypic of baladi chickens for parent stock at one day of	73
	age.	
2	phenotypic of baladi chickens for parent stock at 4weeks of age.	74
3	egg production of Baladi chickens for parent stock at 30, 90 and	79
	150 day of age.	
4	phenotypic of baladi chickens for offspring stock at one day of	88
	age.	
5	phenotypic of baladi chickens for offspring stock at 4 weeks of	89
	age.	
6	Newcastle diseases indirect of baladi chickens for offspring	91
	stock at 16 week of age.	
7	The mRNA abundance of the CD1b gene and IL4I1 gene of	93
	Baladi chickens at 16 week of age	