

# بسم الله الرحمن الرحيم

 $\infty\infty\infty$ 

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992



# CONSERVATIVE VERSUS RADICAL MANAGEMENT OF MORBIDLY ADHERENT PLACENTA

#### (COHORT STUDY)

#### Thesis

Submitted for Fulfillment of MD Degree in Obstetrics and Gynecology

By

#### **Reham Abdelrahman Elsayed Ashmawy**

MSc., in Obstetrics and Gynecology, Ain Shams University

Under supervision of

### Prof. Dr. Magdy Hassan Ahmed Kolaib

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

#### Prof. Dr. Nashwa Fl Said Hassan

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

### **Dr. Walid El Basouny Mohamed**

Assistant Professor Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2022



سورة البقرة الآية: ٢٢



First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof.Dr. Magdy Hassan Ahmed Kolaib**, Professor of Obstetrics and Gynecology, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to **Prof. Dr. Nashwa El Said Hassan, Professor of Obstetrics and Gynecology,** Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to **Dr. Walid El Basouny Mohamed, Assistant Professor Obstetrics and Gynecology,** Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues, , for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

### **CONTENTS**

| Ti | Title Pa                                            |     |
|----|-----------------------------------------------------|-----|
| •  | List of Abbreviations                               | I   |
| •  | List of Table                                       | III |
| •  | List of Figures                                     | IV  |
| •  | Introduction                                        | 1   |
| •  | Aim of the work                                     | 4   |
| •  | Review of literature                                |     |
|    | Chapter (1):Physiology of placentation              | 5   |
|    | Chapter (2): Placenta previa                        | 9   |
|    | Chapter (3): Placenta accreta spectrum              | 18  |
|    | Chapter (4): Diagnosis of placenta accreta spectrum | 36  |
|    | Chapter (5): Management                             | 54  |
| •  | Patients and methods                                | 80  |
| •  | Results                                             | 94  |
| •  | Discussion                                          | 107 |
| •  | Summary                                             | 118 |
| •  | Conclusion                                          | 121 |
| •  | Recommendation                                      | 122 |
| •  | References                                          | 123 |
| •  | الملخص العربي                                       |     |

### **LIST OF ABBREVIATIONS**

| Abb.              | Full term                                      |
|-------------------|------------------------------------------------|
| ABL               | Actual blood loss                              |
| ADCAD             | A-apperance P- pulse G- grimace A- activity R- |
| APGAR             | Respiration                                    |
| ART               | Assisted reproductive technology               |
| В                 | Bladder                                        |
| CD                | Cesarean delivery                              |
| CDI               | Color Doppler imaging                          |
| c-erbB-2 oncogene | Erythroblastic leukemia viral oncogene.        |
| CRL               | Crown rump length                              |
| Cryo              | Cryopercepitate                                |
| CS                | Cesarean sections                              |
| DIC               | Disseminated intravascular coagulopathy,       |
| dNK               | Decidual natural killer cells                  |
| ECM               | Extracellular matrix                           |
| EGFR              | Epidermal growth factor receptor               |
| EMT               | Epithelial-to-mesenchymal transition           |
| ESCs              | Endometrial stromal cells                      |
| EVT               | Extravillous trophoblasts                      |
| FFP               | Fresh Frozen Plasma                            |
| fms               | Feline McDonough Sarcoma                       |
| HB-EGF            | Heparin-binding epidermal growth factor        |
| hCG               | Human chorionic gonadotropin                   |
| Hct (f)           | Hematocrit final                               |
| Hct (i)           | Hematocrit initial                             |
| Hct (m)           | Hematocrit mean                                |
| ICU               | Intensive care unit                            |
| IGF               | Insulin-like growth factor                     |
| IIAL              | Internal iliac artery ligation                 |
| INSL4             | Insulin-like protein 4                         |
| JZ                | Junctional zone                                |
| KG                | Kilogram                                       |
| M                 | Myometrium                                     |
| MAP               | Morbidly Adherent Placenta                     |

### € List of Abbreviations

| Abb.      | Full term                                 |
|-----------|-------------------------------------------|
| ml        | Milliliter                                |
| MMP       | Matrix metalloproteinase                  |
| MNGC      | Multinucleated trophoblast giant cells    |
| MRI       | Magnetic resonance imaging                |
| NICU      | Neonatal intensive care unit              |
| P         | Placental                                 |
| PA        | Placenta accreta                          |
| PAD       | Placental adhesion disorder               |
| PAPP-A    | Pregnancy-associated plasma protein A     |
| PAS       | Placenta Accreta Spectrum"                |
| PC        | Placenta creta                            |
| PI        | Placenta increta                          |
| PP        | Placenta previa                           |
| PP        | Placenta percreta                         |
| PPH       | Postpartum hemorrhage                     |
| PV        | Placental villi                           |
| RDS       | Respiratory distress syndrome             |
| RhD       | Rhesus D                                  |
| SD        | Stander Deviation                         |
| sFlt-1    | Soluble fms-like tyrosine kinase 1        |
| TGF-alpha | Transforming growth factor-BETA           |
| Tie-2     | Endothelial cell tyrosine kinase receptor |
| U         | Unit                                      |
| UAL       | Uterine artery ligation                   |
| UAL       | Low Uterine artery ligation               |
| VEGF      | Vascular endothelial growth factor        |

### **LIST OF TABLE**

| Table No           | Subjects                                                                                                                                                                  | Page |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <b>Table (1):</b>  | Risk factors for placenta previa                                                                                                                                          | 13   |
| <b>Table (2):</b>  | Comparison between the two groups as regards demographic and clinical data                                                                                                | 94   |
| <b>Table (3):</b>  | Comparison between the two groups as regards Antenatal steroid taken, blood groups, and RH                                                                                | 96   |
| <b>Table (4):</b>  | Comparison between the two groups as regards hematocrit initial, final, and mean, blood volume, actual blood loss, ICU admission, operation time, and post operation stay | 97   |
| <b>Table (5):</b>  | Comparison between the two groups as regards neonatal outcomes                                                                                                            | 100  |
| <b>Table (6):</b>  | Comparison between the two groups as regards Blood transfusion intra-operation                                                                                            | 102  |
| <b>Table (7):</b>  | Comparison between the two groups as regards Blood transfusion post-operation                                                                                             | 103  |
| <b>Table (8):</b>  | Comparison between the two groups as regards additional procedures                                                                                                        | 104  |
| <b>Table (9):</b>  | Comparison between the two groups as regards renal injury                                                                                                                 | 106  |
| <b>Table (10):</b> | Comparison between the two groups as regards Intraperitoneal drainage                                                                                                     | 106  |

### **LIST OF FIGURES**

| Figure No           | Subjects P                                           | Page |
|---------------------|------------------------------------------------------|------|
| Figure (1):         | Complete placenta previa (major previa) at           |      |
|                     | transabdominal ultrasound. Placenta lies over the    |      |
|                     | internal cervical os                                 | 10   |
| Figure (2):         | Minor or partial placenta previa at transvaginal     |      |
|                     | ultrasound                                           | 10   |
| <b>Figure (3):</b>  | Diagram showing normal and accreta placentation      |      |
|                     | on a previous cesarean scar                          | 18   |
| Figure (4):         | Histopathology of placenta accreta syndrome          | 22   |
| <b>Figure (5):</b>  | Placental cotyledon in A, normal and B, increta      |      |
|                     | placentation reaching deep myometrial circulation    | 29   |
| Figure (6):         | Histological view of increta villous tissue          | 30   |
| <b>Figure (7):</b>  | (A) Early pregnancy. Sagittal view. Normal           |      |
|                     | implantation of a gestational sac in the fundus      |      |
|                     | (arrowhead). Cervix near long arrow. (B) Low         |      |
|                     | implanted sac in a pregnancy which went to term.     |      |
|                     | Cervix and internal os near arrow. Note the thick    |      |
|                     | anterior myometrium and the continuous white line    |      |
|                     | representing the bladder–uterine wall interface. (C) |      |
| (0)                 | Low implanted pregnancy in placenta accreta          | 37   |
| Figure (8):         | Histological changes in the decidual layer with      |      |
| <b>7.</b> (0)       | advancing gestation.                                 | 40   |
| Figure (9):         | Impact of probe pressure and bladder filling on      |      |
| 71 (40)             | placental bed ultrasound features.                   | 41   |
| <b>Figure (10):</b> | Placental bed after multiple cesarean deliveries     |      |
| T1 (4.4)            | without and with probe pressure.                     | 42   |
| <b>Figure (11):</b> | ,                                                    | 40   |
| F: (10)             | cesarean scar defect.                                | 43   |
| <b>Figure (12):</b> |                                                      | 4.4  |
| F: (10)             | between placental bed and bladder wall               |      |
| Figure (13)         | Moth-eaten features in invasive placenta previa.)    | 45   |
| <b>Figure (14):</b> | Lacunae distorting several cotyledons in a placenta  | 4-   |
| T. (4.5)            | previa increta. g.                                   | 45   |
| <b>Figure (15):</b> | Lakes and lacunae-like features in non-accreta       |      |
|                     | placentas                                            | 46   |

## € List of Figures

| Figure No           | Subjects                                         | Page       |
|---------------------|--------------------------------------------------|------------|
| <b>Figure (16):</b> | Lacunae and corresponding feeding artery i       | n          |
|                     | invasive placentation.                           | 48         |
| <b>Figure (17):</b> | Ultrasound and macroscopic impact of invasiv     | e          |
|                     | placentation on the utero-bladder interface      | 49         |
| <b>Figure (18):</b> | Comparison between the two groups as regards age | <b>e</b> , |
|                     | gestational age, and number of living children   | 95         |
| <b>Figure (19):</b> | Comparison between the two groups as regard      | S          |
|                     | Hematocrit Final                                 | 98         |
| <b>Figure (20):</b> | Comparison between the two groups as regards ICU | J          |
|                     | admission (days)                                 | 98         |
| <b>Figure (21):</b> | Comparison between the two groups as regard      | S          |
|                     | Operation Time (MIN)                             | 99         |
| <b>Figure (22):</b> | Comparison between the two groups as regard      | S          |
|                     | additional procedures:                           | 105        |
|                     |                                                  |            |

#### **ABSTRACT**

**Background:** Placenta accreta is considered a life-threatening condition and the main cause of maternal mortality, postpartum hysterectomy, admission to ICU, and an inadvertent laceration to intestine or bladder during cesarean section.

**Aim:** To compare between outcome of conservative management of morbidly adherent placenta and caesarean hysterectomy.

**Methods:** This study included 90 pregnant females diagnosed by ultrasound to have morbidly adherent placenta (MAP). Maternal history, intraoperative data about placental location, estimated blood loss, units of blood transfusion required and surgical procedure carried out to control bleeding was retrieved. Post-operative need for intensive care unit (ICU) admission and other maternal complications were recorded. Perinatal mortality and neonatal outcomes for birth weights, neonatal ICU admission, and neonatal ICU stay in both groups was also noted.

**Results:** There was no significant difference between the two groups as regards Blood Volume, and although actual blood loss was higher in group 2 than group 1 but the difference wasn't significant. ICU admission and duration mean were significant higher in group 2 where 21(42.9%) females were admitted to ICU for duration mean ±SD equals 2.29±1.189 days versus 5(16.1%) females and duration mean ±SD equals 1.40±0.548 in group 1. Operation time and post operation stay were significant higher in group 2 than group 1. There was no significant difference between the two groups as regards blood transfusion intra and post-operative time.

**Conclusion:** Conservative management of morbidly adherent placenta is associated with lower maternal morbidities and mortalities as compared with radical surgical management in patients who fits the inclusion criteria and wants to preserve their fertility.

#### INTRODUCTION

Placenta accreta was first described nearly 80 years ago as a clinicopathological condition in which the placenta fails to separate partially or totally from the uterine wall. Several concepts have been proposed to explain why and how it occurs. In the past, it was thought that a primary defect of the biological function of the trophoblast would lead to excessive invasion of the myometrium by placental tissue beyond the physiological decidual—myometrial junction zone (*Jauniaux and Jurkovic*, 2012).

The current prevailing hypothesis is that a defect of the endometrium—myometrial interface, typically at the site of a prior hysterotomy or cesarean section, leads to a failure of normal decidualization in the corresponding uterine area. This allows extravillous trophoblastic infiltration and villous tissue to develop deeply within the myometrium, including its circulation, and to sometimes reach the surrounding pelvic organs (*Jauniaux et al.*, 2018).

Depending on the depth of trophoblast invasion into the myometrium, three subtypes have been differentiated by pathologists: (1) superficial placenta accreta (also called placenta creta, vera, or adherenta), where the villi attach directly to the surface of the myometrium without invading it; (2) placenta increta, where the villi penetrate deeply into the myometrium up to the external layer; and (3) placenta percreta, where the invasive villous tissue reaches and penetrates through the uterine serosa (Jauniaux et al., 2018).

Placenta increta and percreta are often referred to as abnormally invasive placenta. More invasive placentation is not due to a further invasion of extravillous trophoblast in the uterine wall, but likely arises from an extended scar defect that allows the development of chorionic villi deep within the uterine wall, including within its peripheral circulation. The striking rise in the incidence of abnormally adherent and invasive placentation in women with a prior cesarean delivery supports the latter concept (*Parra-Herran and Djordjevic*, 2016).

Owing to the lack of international consensus on nomenclature, Jauniaux et al. (2018) suggested the term "*Placenta Accreta Spectrum*" (PAS) as a general term that includes both abnormal adherence and abnormal invasion.

Placenta accreta is considered a life-threatening condition and the main cause of maternal mortality, postpartum hysterectomy, admission to ICU, and an inadvertent laceration to intestine or bladder during cesarean section (*Eller et al.*, 2011). Any attempt to manually remove a PAS disorder typically provokes heavy bleeding and is associated with high maternal morbidity and mortality (*Silver*, 2015).

The diagnosis of PAS is usually established by ultrasonography and the features suggestive of placenta accreta include vascular spaces within the placenta, thinning of the myometrium overlying the placenta, loss of the retroplacental "clear space", protrusion of the placenta into the bladder, increased vascularity of the uterine serosa and turbulent blood flow through the lacunae on Doppler ultrasonography (*Murray et al.*,2005)..

#### **AIM OF THE WORK**

The aim of the study is to compare between conservative management of morbidly adherent placenta and caesarean hysterectomy as regards postpartum haemorrhage and other complications to the mother and the neonate.

#### Primary outcome:

Amount of maternal blood loss in both conservative management of morbidly adherent placenta and caesarean hysterectomy.

#### Secondary outcome:

Neonatal APGAR score and maternal complications in both conservative management of morbidly adherent placenta and caesarean hysterectomy.