

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University Faculty of Medicine Department of Medical Microbiology and Immunology

Detection of Colistin Resistant Gram Negative Bacilli in Intensive Care Unit Patients Admitted to Ain Shams University Hospitals

Thesis

For Partial Fulfillment of **Master Degree** in **Medical Microbiology and Immunology**

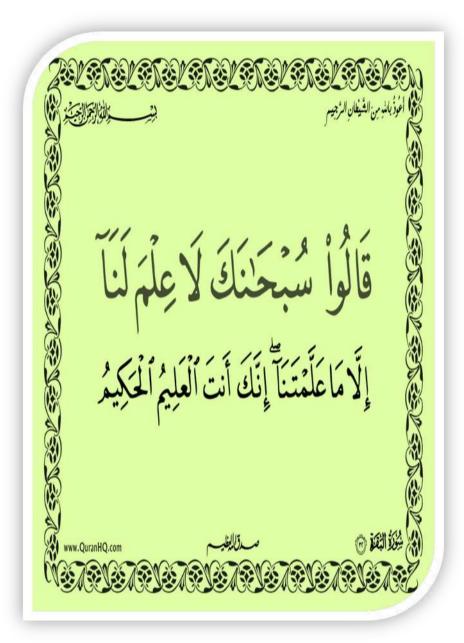
\mathfrak{B}^{χ} Esraa Raafat Ibrahim Abo El naga

M.B.B.Ch., Faculty of Medicine Ain Shams University

Supervised by

Assist.Prof.Walaa Abd El-Latif Ibrahim El Sadek

Assistant Professor of Medical Microbiology and Immunology Faculty of Medicine - Ain Shams University


Dr. Yasmin Mohamed Ahmed Mahmoud

Lecturer of Medical Microbiology and Immunology Faculty of Medicine - Ain Shams University

Dr. Ahmed Kamal Mohamed Ali

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams Universit
2020

First of all, all gratitude is due to **ALLAH** Almighty for blessing this work, until it has reached its end, as a part of His generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Dr. Walaa Abd El-Latif Ibrahim El Sadek,** Assist. Professor of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work. It is a great honor to work under her guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Yasmin Mohamed Ahmed Mahmoud,** Lecturer of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, for her tireless guidance, support and for her patience to get this work into light.

I cannot forget the great help of **Dr. Ahmed Kamal Mohamed Ali,** Lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his support.

Particular thanks to **Prof. Faten Moustafa Ali,** head of Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University for her help and cooperative attitude.

Words fail to express my love, respect and appreciation to my husband for his unlimited help and support. Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

Be Esraa Raafat Ibrahim

List of Contents

Subject	Page No

List of Abbreviations	i
List of Figures	iv
List of Tables	vi
Abstract	vii
Introduction	1
Aim of the Work	4
Review of Literature	
Gram negative bacilli	5
Colistin	23
Colistin resistant	31
Mcr-1 gene	55
Patients and Methods	63
Results	76
Discussion	82
Summary	90
Conclusion	92
Recommendations	93
References	94
Summary in Arabic	

List of Abbreviations

AST : Antimicrobial susceptibility testing

ATP : Adenosine triphosphate

BMD : Broth microdilution method

CAMPs : Cationic antimicrobial peptides

CLED : Cystine-Lactose-Electrolyte-Deficient-medium.

CLSI : Clinical and Laboratory Standards Institute.

CMS : Colistin methanesulfonate.

CPSs : Capsular polysaccharides

CSU : catheter-stream urine

Dl : Deciliter

DTT : Dithiothreitol

EA : Essential agreement.

ECV : epidemiological cutoff value.

EDETA : Ethylenediaminetetraacetic acid

ESBL : Extended-spectrum β-lactamase

ETA : Ethanolamine.

GI : Gastrointestinal

GNB : Gram-negative bacteria.

HPLC: High-Performance Liquid Chromatography.

ICU: Intensive Care Unit

IU : International unit

IV : Intravenous

Kdo : Ketodeoxyoctulosonate.

Kg : Kilo Gram

KPC : *Klebsiella pneumoniae* carbapenemase

LAMP : Loop-mediated isothermal amplification.

L-Ara4N : 4-amino-4-deoxy-L-arabinose.

LPS: Lipopolysaccharide.

MBLs : Metallo-beta-lactamases

Mcr : Mobilized colistin resistance

MDR : Multi drug resistance.

Mg : Milli Gram

MH : Muller Hinton

MMS : MICRONAUT MIC-Strip.

MSU : Mid-stream urine samples

MTS : MIC Test Strip.

Ng : Neisseria gonorrheae

Nm : Neisseria meningitidis

OMP : Outer membrane porines

OST : Osthole

PCR : Polymerase Chain Reaction

PEA : Phosphoethanolamine

PR : Plasmid-borne

SPSS : Statistical package for Social Science.

STC : SensitestTM Colistin

TA : Tracheal aspirate

TCS: Two-component system

UV : Ultraviolet light

VME : Very major error.

WHO : World Health Organization.

List of Figures

Figure No. — Fitle — Page N

Figure (1): FimH is a bacterial adhesin that helps bacteria such as E.coli to bind to
host cells and their receptors (here: the human proteins CD48 and TLR4, or mannose
residues) (Kline et al., 2009)
Figure (2): Structure of polymyxin B and colistin. Polymyxin B and colistin (polymyxin E)
share a similar primary sequence with the only difference being at position 6, in which D-Phe
in polymyxin B is replaced by and D-Leu in colistin(Biswas et al., 2012)26
Figure (3): Antimicrobial mode of action of polymyxin against Gram-negative bacterial
membranes. LPS: Lipopolysaccharide (Biswas et al., 2012)
Figure (4): Mechanisms of LPS modification involved in polymyxin resistance in Gram-
negative bacilli. the sensing of various stress conditions, such as the presence of cationic
compounds (polymyxins), low Mg^{2+} and Ca^{2+} concentrations, acidic pH, and high
$\mathrm{Fe^{3+}}$ concentrations, by the histidine kinases PhoQ and PmrB activates the two-component
systems (TCSs) PhoP-PhoQ and PmrA-PmrB, respectively. Subsequent activation of
the arnBCADTEF and pmrCAB operons leads to the synthesis and addition of 4-amino-4-
deoxy-L-arabinose (L-Ara4N) and phosphoethanolamine (PEtN) to lipid A, respectively (Hjort
et al., 2016)
Figure (5): E-test of colistin (<i>Galani et al.</i> , 2008)
Figure (6): MICRONAUT MIC. (Matuschek et al., 2018)
Figure (7): rapid polymyxin NP test showing sensitive and resistant strains (Simar et al.,
2017)50
Figure (8): Steps of PCR reaction (Adu-Oppong et al., 2017)
Figure (9) Phosphoethanolamine Transfer Reaction Catalysed by mcr-1 (Hinchliffe et al., 2017)57
Figure (10): Overall structure of MCR-1-ED (<i>Stojanoski et al., 2016</i>)59
Figure (11): plates of MacConkey's agar medium showing lactose fermenting colonies66
Figure (12): plates of MacConkey's agar medium showing non lactose fermenting
colonies
Figure (13): plates of MacConkey's agar medium cultured with sputum sample using ordinary
swab showing lactose fermenting large mucoid colonies of klebsiella pneumonia67
Figure (14): Indirect film of Gram stain showing Gram negtive bacilli and coccobacilli67

List of Figures

Figure (15): Rack of biochemichal reaction of E.coli	68
Figure (16): Methyle red test (positive test on the right and nnegative test on the left)6	59
Figure (17): Rack of biochemichal reaction of K. pneumonia	69
Figure (18): Rack of biochemichal reaction of P. aeruginosa	70
Figure (19): Oxidase test (the upper strept is purpple in color (positive) for p.aeroginosa, while	the
lower strept is negative)	70
Figure (20): ComASPTM colistin showing resistant isolate in the second row	73
Figure (21): The distribution of Gram negative bacilli isolates in different clinical samples	76
Figure (22): The distribution of resistant and sensitive isolates of each organism	78
Figure (23): the distribution of sensitive and resistant isolates in each sample	79
Figure (24): the numbers of resistant organism in clinical samples	30
Figure (25): the distribution of resistant organism in clinical samples	80
Figure (26): Gel electrophoresis of mcr-1 gene (320 bp) encoding for colistin resistance (str	rain
no 12 is the resistant strain), Pc: positive control and NC: (negative control)8	31

List of Tables

Table No.	Title	Page No.		
Table (1): Activity of colistin against selected pathogenic bacteria (World				
Health Organization, 201	18)	25		
Table (2): Current CLSI	colistin Breakpoints (CLS)	I, 2018)32		
Table (3): Historical CLS	SI colistin Breakpoints repl	laced by current CLSI		
colistin Breakpoints (CL)	SI, 2018)	32		
Table (4): Mechanisms o	f polymyxin resistance in	GNB (Biswas et al.,		
2012)		44		
Table (5): the sequence	e of the primers of mcr	r-1 gene (Osei Sekyere,		
2019	•••••	74		
Table (6): Table showing t	the percentage of G-ve baci	lli isolates77		

Abstract

Background: Colistin is the last choice for serious infections caused by multidrug-resistant (MDR) Gram negative bacteria (GNB) and one of the prominent causes for spreading the resistance is Plasmid-borne (PR) Mobile colistin Resistance (*mcr*). Broth microdilution method (BMD) is the reference tool for colistin MIC determination, but it has many obstacles, so commercial BMD methods had been developed that are more user-friendly than the reference method and (Liofilchem ® ComASPTM) is one of them, which we used to determine colistin MIC in this study.

Objective: to detect colistin resistant gram negative bacilli by ComASPTM Colistin (formerly Sensi TestTMColistin) among Intensive Care Unit (ICU) patients admitted to Ain Shams university hospitals and screen the presence of *mcr-1* gene by Polymerase Chain Reaction (PCR) in colistin resistant isolates.

Methodology: This observational cross-sectional study was performed in the Medical Microbiology and Immunology Department, Faculty of Medicine, Ain Shams University between June 2019 to November 2019. One hundred isolates of Gram negative bacilli were obtained from patients admitted at different ICUs of Ain Shams University

Hospitals. Full identification was done by conventional microbiological methods, Then MIC was measured for all isolated organisms by using commercial BMD ComASPTM Colistin. Lastly, PCR was done for colistin resistant isolates to detect *mcr-1* gene.

Results: 60% of the Gram negative bacilli isolates were *K.pneumoniea*. Colistin resistance was 14% among 100 (GNB), Prevalence of *mcr-1* gene was 7.1%.

Conclusion: Commercial BMD ComASPTM Colistin is a simple and uncomplicated method for detecting colistin susceptibility.

Keywords: Colistin resistance, *mcr-1* gene, ComASPTM Colistin.