

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

Evaluation of Serum Interleukin (IL)-17A and IL-22 in Pediatric Patients with SARS CoV-2 Infection

Thesis

For Partial Fulfillment of Master Degree in **Pediatrics**

By

Nada AboAbdoun Soliman

M.B., B.Ch. (2016), Faculty of Medicine - Ain Shams University

Under supervision of:

Prof. Dr. Gehan Ahmed Mostafa

Professor of Pediatrics, Pediatric Allergy, and Immunology Unit Faculty of Medicine - Ain Shams University

Prof. Dr. Hanan Mohamed Ibrahim

Professor of Pediatrics, and Head of the Pediatric Intensive Care Unit Faculty of Medicine - Ain Shams University

Dr. Dalia Fathy El-Sherif

Assistant Professor of Pediatrics, Pediatric Neonatal Care Unit Faculty of Medicine - Ain Shams University

Dr. Sondos Mohamed Magdy

Lecturer of Pediatrics, Pediatric Intensive Care Unit Faculty of Medicine - Ain Shams University

Prof. Dr. Abeer Al Sayed Shehab

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Lin Shams University
2022

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Gehan Ahmed Mostafa**, Professor of Pediatrics, Pediatric Allergy, and Immunology Unit, Faculty of Medicine - Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Dr. Hanan Mohamed Ibrahim**, Professor of Pediatrics, and Head of the Pediatric Intensive Care Unit, Faculty of Medicine - Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Dalia Fathy El-Sherif,** Assistant Professor of Pediatrics, Pediatric Neonatal Care Unit, Faculty of Medicine - Ain Shams University and **Dr. Sondos Mohamed Magdy,** Lecturer of Pediatrics, Pediatric Intensive Care Unit, Faculty of Medicine - Ain Shams University for their great help, active participation and guidance.

I wish to introduce my deep respect and thanks to **Prof. Dr. Abeer Al Sayed Shehab**, Professor of Clinical Pathology, Faculty of Medicine - Ain Shams University, Ain Shams University, for her kindness, supervision and cooperation in this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Nada AboAbdoun Soliman

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iii
List of Abbreviations	v
Introduction	1
Aim of the Work	4
Reivew of Literature	
Coronavirus Disease 2019 (COVID-19)	5
Multi-System Inflammatory Syndrome in Children (I	MIS-C) 31
Interleukin (IL)-17A and Interleukin (IL)-22	49
Patients and Methods	57
Results	68
Discussion	91
Summary	99
Conclusions	102
Recommendations	103
Reference	104
Arabic Summary	

List of Tables

Table No	o. Title	Page No.
Table (1):	Among children age 0 through 9 years and through 19 years the frequency of symptoms.	•
Table (2):	Clinical manifestations of SARS-CoV-2 Infe	ction17
Table (3):	Diagnostic tests for COVID-19	20
Table (4):	CO-RADS COVID-19 reporting and Data Sys computed tomography, COVID-19 cord Disease 2019, GGO ground-glass opacities	onavirus
Table (5):	RSNA "radiological Society of North Americomputed tomography, COVID-19 cordisease 2019, GGO ground-glass opacities	ca", CT onavirus
Table (6):	CDC and WHO case definitions of multinflammatory syndrome in children	
Table (7):	Basic clinical and laboratory data of the patients.	
Table (8):	Percentage of the abnormalities of the learn routine inflammatory markers of COVID-19, and IL22 in the studied patients	IL 17A
Table (9):	Comparison between the studied patients and control children in serum levels of IL-17A and	•
Table (10):	Comparison between patients with COVID patients with MIS-C in serum levels IL-17A and	
Table (11):	Comparison between patients who recover those patients who died in serum levels of the inflammatory markers of COVID-19	studied
Table (12):	Comparison between patients who recover those patients with a residual illness in serur of the studied inflammatory markers of COV	n levels

List of Tables (cont...)

Table No	o. Title	Page No.
Table (13):	Correlations between serum levels of IL-1 22 and the different studied parameters in with SARS CoV-2.	all patients
Table (14):	Correlations between serum levels of IL-1 22. and the different studied parameters with COVID-19.	in patients
Table (15):	Correlations between serum levels of IL-1 22 and the different studied parameters patients	s in MIS-C

List of Figures

Fig. No.	Title	Page No.
Figure (1):	SARS-CoV-2 life cycle in virus susceptible	host 7
Figure (2):	ARDS in severe SARS-CoV-2 infections	11
Figure (3):	Pathogenesis of MIS-C. Early infection (with SARS-CoV-2 is likely to be asymptomildly symptomatic in children	matic or
Figure (4):	Infographic showing CDC criteria for the of MIS-C	•
Figure (5):	MIS-C therapeutics	45
Figure (6):	MIS-C management based on risk criteria	46
Figure (7):	Schematic illustration of signaling pathy involves IL-17A in inflammatory diseases	<u>-</u>
Figure (8):	Comparison between all patients with SAR and healthy control children in serum levels of	
Figure (9):	Comparison between patients with COVII healthy control children in serum levels of I	
Figure (10):	Comparison between patients with MIS healthy control children in serum levels of I	
Figure (11):	Comparison between all patients with SAR and healthy control children in serum levels of	
Figure (12):	Comparison between patients with COVII healthy control children in serum levels of I	
Figure (13):	Comparison between patients with MIS healthy control children in serum levels of I	
Figure (14):	A significant positive correlation betwee levels of IL-17A and IL-22 in all patie SARS CoV-2.	nts with

List of Figures (cont...)

Fig. No.	Title	Page No.
Figure (15):	A significant positive correlation levels of IL-17A and IL-22 in	patients with
Figure (16):	A significant positive correlation levels of IL-17A and IL-22 in patients	between serum

List of Abbreviations

Abb.	Full term
ACE-2A	ngiotensin-converting enzyme 2
	anssen COVID-19 vaccine
AKIA	
	cute Respiratory Distress Syndrome
	rain Natriuretic Peptide
	fizer-Biotech COVID-19 vaccine
CA	
CBC	omplete Blood Count
	luster of differentiation 4
	luster of differentiation 8
<i>CDC C</i>	enters for Disease Control and Prevention
CK	reatine Kinase
p	categorical CT Assessment Scheme for atients Suspected of having COVID-19 Definition and Evaluation.
COVID-19C	oronavirus Disease
<i>CRP C</i>	- reactive protein
CS	ytokine Storm
CT C	omputed Tomography
ECHOE	chocardiography
<i>ESR E</i>	rythrocyte Sedimentation Rate
FDA F	ood and Drug Administration
ICUIn	ntensive Care Unit
IL-17In	iterleukin 17
IL-17AIn	nterleukin 17A
IL-17FIn	
IL-22In	ıterleukin -22
<i>IL-6In</i>	nterleukin-6

List of Abbreviations (cont...)

Abb.	Full term
IOR	Interquartile Range
	Intravenous Immune Globulin
	Kawasaki Disease
	Lactate Dehydrogenase Enzyme
	Low Molecular Weight Heparin
	Left Ventricular function
•	Macrophage Activation Syndrome
	Middle East Respiratory Syndrome
	Multisystem inflammatory syndrome in children
MRNA-1273	Modern COVID-19 vaccine
	Nucleic acid amplification test
	Neutrophil-to-lymphocyte ratio
	Pathogen associated molecular patterns
	Polymerase Chain Reaction
	Polyarticular juvenile idiopathic arthritis
<i>PMIS</i>	Pediatric multisystem inflammatory syndrome
PMIS-TS	Pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2
PPI	Proton Pump inhibitor
PRRs	Pattern recognition receptors
PT	Prothrombin time
<i>PTT</i>	Partial thromboplastin time
<i>RSNA</i>	Radiological Society of North America
RT PCR	Real-time polymerase chain reaction
SARS COV2	Severe acute respiratory syndrome coronavirus 2
<i>SD</i>	Standard Deviation

List of Abbreviations (cont...)

Abb. Full term S-JIASystemic Juvenile Idiopathic Arthritis THT-Helper TIDThree times a day TNFTumor Necrotic Factor WHOWorld Health Organization

Abstract

Both IL-17A and IL-22 share cellular sources and signaling pathways. They have synergistic action on epithelial cells to stimulate their production of antimicrobial peptides which are protective against infections. However, both interleukins may contribute to ARDS pathology if their production is not controlled. This study aimed to investigate serum levels of IL-17A and IL-22 in relation to the disease outcome in patients with SARS-CoV-2. Serum IL-17A and IL-22 were measured by ELISA in 40 patients with SARS-CoV-2, aged between 2 months and 16 years, (18 had COVID-19 and 22 had multisystem inflammatory syndrome in children "MIS-C") in comparison to 48 age- and sex-matched healthy control children. Patients with COVID-19 and MIS-C had significantly higher serum IL-17A and IL-22 levels than healthy control children (P < 0.001). Increased serum IL-17A and IL-22 levels were found in all patients. Elevated CRP and serum ferritin levels were found in 90% of these patients. Lymphopenia, neutrophilia, neutropenia, thrombocytopenia and elevated ALT, LDH and D-dimer were found in 45%, 42.5 %, 2.5%, 30%, 32.5%, 82.5%, and 65%, respectively of these patients. There were non-significant differences between patients who recovered and those who died or had a residual illness in serum levels of IL-17A, IL-22 and the routine inflammatory markers of COVID-19. In conclusions, serum IL-17A and IL-22 levels were up-regulated in all patients with COVID-19 and MIS-C. Levels of serum IL-17A, IL-22 and the routine inflammatory markers of COVID-19 were not correlated with the disease outcome. Our conclusions are limited by the sample size.

Keywords

COVID-19, IL-17A, IL-22, MIS-C, SARS-CoV-2

Introduction

Cytokine storm has been observed in some COVID-19 patients that may progress to multiple organ dysfunction and death. Thus, the prevention and early treatment of cytokine storm in patients with COVID-19 are important. Measuring levels of serum pro-inflammatory cytokines have many potential applications in COVID-19 management, determination of prognosis and prediction of the response to treatment (*Liu et al.*, 2021; *Kim et al.*, 2021).

Thelper (Th) 17 cells, a distinct lineage of effector CD4⁺ T cells, are characterized by production of interleukin (IL)-17. These cells also express IL-22, at substantially higher amounts than Th1 or Th2 cells. IL-6 enhances the generation of Th17 cells and both IL-6 and IL-17 synergistically promote viral persistence by the protection of the virus-infected cells from apoptosis (*Hou et al.*, 2014). Similar to IL-17A, IL-22 expression was initiated by IL-6 and other pro-inflammatory cytokines (*Liang et al.* 2006).

IL-17 family of cytokines consists of six ligands from IL-17A to IL-17F. IL-17A is considered to be the effector

and the classic cytokine of Th17 CD4⁺ T cells. IL-17A plays a protective role in the host defense against pathogens through eliciting an acute immune response at the epithelial and mucosal barriers to induce the tissue healing after injury and to maintain the epithelial tight-junction barrier during the process of inflammation (Monin et al., 2019). However, uncontrolled and excessive production of IL-17A mechanisms is of one the potential underlying chronic inflammatory conditions autoimmunity, neoplasms (McGeachy et al., 2020). Although the mediated responses of IL-17A play a role in the killing of the pathogens via neutrophil recruitment, this may occur at the expense of the tissue damage. This "double-edged sword" paradigm has been involved in the lung injury caused by acute respiratory distress syndrome and H1N1 influenza infection (Li et al., 2012; Mikacenic et al., 2016).

IL-22 is a member of the IL-10 family. It mediates its effects via the IL-22 receptor complex which is expressed by non-hematopoietic cell lineages of lung, skin, intestine, liver, pancreas and kidney (*Dudakov et al.*, 2015). IL-22 has a dual role either protective or pathogenic functions during inflammatory, infectious and autoimmune diseases (*Ivanov et al.*, 2013). It has a role in tissue regeneration and