

بسم الله الرهكن الرّحيم

$\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد

Ain Shams University Faculty of Engineering Structural Engineering Department

BEHAVIOR OF HOLLOW STEEL SECTIONS FILLED WITH SAND AND EPOXY RESIN MIXES

By

Mahmoud Mohamed Elsayed Marzouk

M.Sc. 2016, Structural Engineering Department Ain Shams University

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Doctor of Philosophy in Civil Engineering (Structural)

Supervised by

Prof. Dr.

Abdelrahim Khalil Dessouki

Professor of steel structures Structural Engineering Department Ain Shams University Dr.

Mohamed Kohail Fayez

Associate Professor Structural Engineering Department Ain Shams University

Dr.

Tamer Hanafy Radwan

Assistant professor Structural Engineering Department Ain Shams University Dr.

Nady Mohamed Morsy

Assistant professor Civil Engineering Department MTI University

Cairo - Egypt 2022

Ain Shams University Faculty of Engineering Structural Engineering Department

Approval Sheet

Name : Mahmoud Mohamed Elsayed Marzouk

Title of thesis: Behavior of Hollow Steel Sections Filled with

Sand and Epoxy Resin Mixes

Degree : Doctor of Philosophy in Civil Engineering (Structural)

Examining Committee	<u>Signature</u>
Prof Dr. Fouad Helmy Fouad	
Professor of steel structures	
Alabama University – United States	
Prof Dr. Shrief Mohamed Ibrahim	
Professor of steel structures	
Ain Shams University	
Prof. Dr. Abdelrahim Khalil Dessouki	
Professor of steel structures	
Ain Shams University	

Date: August 2022

STATEMENT

This thesis is submitted to Ain shams University, Cairo,

Egypt, for the Doctor of Philosophy in Civil Engineering

(Structural Engineering).

The work included in this thesis was carried out by the

author in the Department of Structural Engineering, Faculty of

Engineering, Ain Shams University, from 2016 to 2021

No part of this thesis has been submitted for a degree or a

qualification to any other University or Institution.

Name

: Mahmoud Mohamed Elsayed Marzouk

Date

: / / 2022

Signature

INFORMATION ABOUT THE RESEARCHER

Name	: Mahmoud Mohamed Elsayed Marzouk
Date of Birth	: March 19th, 1987
Place of Birth	: Minia, Egypt
Qualifications	: M.Sc. 2016, Structural Engineering Department Ain Shams University
Present Job:	
Signature:	

ACKNOWLEDGMENTS

First and foremost, praise and thanks to Almighty Allah, the Most Gracious, the Most Merciful, and peace be upon His Prophet.

I would like to express my deepest thanks and appreciation to **Professor Dr. Abdelrahim Khalil Dessouki**, for his continuous advice, keen interest, and valuable supervision and for his reviewing of the manuscript.

Profound gratitude and sincere appreciation to **Dr. Mohammed Kohail Fayez** for his direct supervision, valuable criticism, usual and .continuous support, and reviewing the manuscript

Greatly appreciate the help, guidance, and support provided by **Dr. Tamer Hanafy Radwan** throughout all stages of research. Appreciate the help by **Dr. Nady Mohamed Morsy**.

Finally, I would like to thank deeply my family for their continuous encouragement, overwhelming support, fruitful care, and patience, especially in the difficult times.

Mahmoud Mohamed Elsayed Marzouk

ABSTRACT

The behavior of the composite sections has been examined, particularly for the composite columns. Some previous research used concrete to fill in steel tube columns to improve the different buckling modes of steel tubes and increase the strength of the columns. Other researchers used the sand to fill in steel tube columns to improve the different buckling modes of steel tube columns.

This research aim is to improve the behavior of hollow steel sections to resist different buckling modes. In this context, the study is presently being conducted on hollow steel sections filled with materials having lighter weight, more ductility, high tensile strength, and easy to operate. The aim of mixing sand with epoxy resin is to improve the shear strength of the filling material. Properties of epoxy materials are better than properties of cement as better adhesion, low shrinkage, lower weight, higher tensile strength, high ductility, better workability, and better resistance to physical and chemical attacks.

This research focuses on the behavior of hollow steel sections filled with sand and epoxy resin mixes under concentric loads. A total of 16 specimens of square hollow and composite columns have been examined to test the behavior of slender hollow steel sections filled with sand and epoxy resin mix. In this process the experimental program considers two groups of test specimens, the first group has 7 models of Hollow Steel columns (Group-H). The second group has 9 models of composite steel columns (Group-C). Different parameters were considered in this study which are epoxy to sand ratios mixes, steel tube width-to-thickness ratio (b/t), and the height-to-with ratios of steel tubes (h/b).

A nonlinear finite element model (FEM) using the multi-purpose FE program ANSYS has been developed. The validity of the developed model was examined by comparing with the experimental data of the current experiments. The comparison indicated that the results of the FEM well agree with the experimental results. Upon completing the FE model verification, it was used to extend the range of investigated parameters. Results from a wide range parametric study were utilized to propose design formulae and design charts to be used for calculating the capacity of hollow steel tubes filled with sand and epoxy resin mixes.

Based on test results obtained, it became clear the enhancement in the behavior of steel hollow section filled with sand and epoxy resin mix also, it is confirmed that tube length has a considerable effect on the carrying capacity and the failure mode. In all test tubes, fracture occurred by the convex local buckling of the steel section due to the outward thrust of the filling material.

TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	i
LIST OF TABLES	vi
LIST OF FIGURES	vii
ABBREVIATIONS	xiii
CHAPTER 1: INTRODUCTION	1
1.1 General	1
1.2 Reason of Using Hollow Steel Columns Filled With Sand	4
and Epoxy Resin Mixes	
1.3 Merits of Steel Tube	5
1.4 Merits of Filling Material (Sand and Epoxy Resin Mix)	6
1.5 Aim of the Research	6
1.6 Contents of the Thesis	8
CHAPTER 2: LITERATURE REVIEW	9
2.1 General	9
2.2 Previous Researches of Composite Columns	10
2.2.1 Hollow Steel Sections Filled with Concrete	10
2.2.1.1 Conclusion	31
2.2.2 Hollow Steel Sections Filled with Polymers	32
Materials Like Epoxy	
2.2.2.1 Conclusion	34
2.2.3 Hollow Steel Sections Filled with Sand	35
2.2.3.1 Conclusion	37

2.3 Design Procedures in Different International Codes	37
2.3.1 Steel Tube Slenderness Limits in Current Codes	37
2.3.2 Steel Tube Area Limits	39
2.3.3 Design Methods of Composite Columns in	40
Different International Codes	
2.3.3.1 ECP 2007 – LRFD 2013	40
2.3.3. AISC 2016	41
CHAPTER 3: EXPERIMENTAL PROGRAM	43
3.1 General	43
3.2 Material Mechanical Properties	43
3.2.1 Mechanical Properties of Hollow Steel	43
Sections Filling Material (Sand and Epoxy Resin	
Mix)	
3.2.1.1 Testing Cubes of Sand and Epoxy Resin Mix	44
3.2.1.2 Cubes Test Results	47
3.2.1.3 Effect of Different Epoxy to Sand Ratio on	50
Compressive Strength (Fcu)	30
3.2.1.4 Effect of Different Epoxy to Sand Ratio on	51
Young's Modulus (E)	
3.2.2 Steel Properties	51
3.3 Test Specimens3.4 Test Setup For All Columns	53
3.5 Mix Design and Its Influence on Construction Time	62
3.3 Why Design and its influence on Construction Time	65
CHAPTER 4: EXPERIMENTAL RESULTS	67
4.1 General	67
4.2 Experimental Results and Discussion	67
4.2.1 Failure Modes	68

4.2.2 Effect of Different Parameters on Column Strength	81
4.2.2.1 Effect of Epoxy to Sand Ratios on Composite	81
Column Strength	
4.2.2.2. Effect of Width to Thickness Ratios (b/t) On	83
Composite Column Strength	
4.2.2.3. Effect of Height to Width Ratios (h/b) on	86
Composite Column Strength	
4.2.3 Load-Displacement (P-Δ) Curves of Hollow	88
Sections Filled With Sand and Epoxy Resin Mix	
4.2.3.1. Effect of Epoxy to Sand Ratios on P- Δcurve	88
4.2.3.2. Effect of Width-to-Thickness Ratio (b/t) on	90
P- Δ curve	
4.2.3.3 Effect of Height-to- Width Ratio (h/b) on	94
P-Δ curve	
4.2.4 Load-Local Buckling (Δx) Relationships	99
4.3 Mix Design and Its Influence on Construction Cost and	106
Strength	
CHAPTER 5: FINITE-ELEMENT ANALYSIS AND	107
VERIFICATION	
5.1 Genera	107
5.2 Finite Element Model	107
5.2.1 Element Types	107
5.2.1.1 Steel Element	108
5.2.1.2 Hollow Steel Sections Filling Material	109
(Sand and Epoxy Resin Mix)	
• • •	110
5.2.2 Modeling of Interface between Filling Material and	110
Steel Tube	

	5.2.3 Material Properties	111
	5.2.3.1 Stress-Strain Relationship of Steel Tube	112
	5.2.3.2 Stress-Strain Relationship of Filling	113
	Material (Sand and Epoxy Resin Mixes)	
	5.2.4 Boundary Conditions, Load Application and Meshing	114
	5.2.5 Initial Imperfections	115
5.3	Verification of the Finite element model	116
	5.3.1 Verification of FEM Using Current Experimental Results	117
	5.3.2 Verification of FEM Using (A. Matloub 2009)	121
	Experimental results.	
СНАР	PTER 6: PARAMETRIC STUDY	123
6.1	Introduction	123
6.2	Parametric Study	123
	6.2.1 Effect of Flat Width-to-Thickness b/t Ratio on	124
	Column Strength	
	6.2.2 Effect of Height to Width (h/b) Ratio on Column	134
	Strength	
	6.2.3 Effect of Steel Yield Strength Fy on column strength	136
6.3	Lateral Deformation and Axial Displacement	138
СНАР	TER 7: NEW PROPOSED DESIGN MODEL	141
	General	141
	Design Methods in Different International Codes for	141
	CFST	
	7.2.1 CFST in the Egyptian Code Practice of Steel	141
	Structures (ECP 2007-LRFD 2013)	

7.2.1.1 Proposed Effective Width	142
7.2.2 CFST in the American Institute of Steel	145
Construction (AISC 2016)	
7.2.3 Verification of Proposed Equation	145
HAPTER 8: SUMMARY AND CONCLUSIONS	157
8.1 Summary	157
8.2 Conclusions	159
8.3 Recommendation for Further Research	161
APPENDIX (A)	162
APPENDIX (B)	164
REFERENCES	166

LIST OF TABLES

		Page
3.1	Results of sand and epoxy resin cubes	44
3.2	Geometric and material properties	55
4.1	Results of test for epoxy to sand ratios specimens	82
4.2	Results of test for b/t ratios specimens	84
4.3	Results of test for h/b ratios specimens	87
4.4	Axil displacement (Δy) for epoxy to sand ratios	89
4.5	specimens Axil displacement (Δy) for b/t ratios	91
4.6	Axil displacement (Δy) for h/b ratios specimens	96
4.7	Comparison between the hollow steel column and after	106
	it is filled with sand and epoxy resin mixture	
5.1	Comparison between FEM and Experimental results of	118
	present research	
5.2	Geometric and material properties (A. Matloub 2009)	121
5.3	Comparison between FEM results and Experimental	122
	results of (A. Matloub 2009)	
6.1	Results of FE models for h/b=3.3	125
6.2	Results of FE models for h/b=4	126
6.3	Results of FE models for h/b=5	127
6.4	Results of FE models for h/b=6.6	128
6.5	Results of FE models h/b=10	129
6.6	Results of FEM for h/b ratios	135
6.7	Results of FEM for different steel yield strength Fy	137
7.1	Comparison between Pexp and Pcode	148
7.2	Comparison between P _{FEM} and P _{code} for h/b=3.3	148
7.3	Comparison between P _{FEM} and P _{code} for h/b=4	149
7.4	Comparison between P _{FEM} and P _{code} for h/b=5	150
7.5	Comparison between P _{FEM} and P _{code} for h/b=6.6	151

LIST OF FIGURES

		Page
1.1	Different cross sections of composite columns (A. Matlob 2009)	3
2.1	Typical Failure Mode of CFT Columns (M. Nejad, et al. (2020))	11
2.2	Typical failure mode of specimens (T. Zhou, et al 2020)	12
2.3	Constituents and pelletization process of calcite powder pellets (M. Abhilash et al 2019)	13
2.4	Typical failure mode: (a) L1600-CFST, (b) L1600-C50-t3.4-8, (c) concrete jacket, (d) original CFST and (e) inner concrete. (T. Zhu et al. 2019)	15
2.5	Failure modes: (A) specimen 1; (B) specimen 2; (C)	16
	specimen 3; (D) specimen 4; (E) specimen 5; (F) specimen 6 (L. He 2019)	
2.6	(a) Meso-scale simulation model; and (b) loading method (L. Jin, et al. 2019)	17
2.7	Local buckling modes (M. Hassanein, et al. 2018)	19
2.8	Types of hexagonal CFST columns and confined concrete (M. Hassanein 2017)	21
2.9	Column specimens (T. Ekmekyapar, et al. 2016)	22
2.10	Shapes of specimens (B. Evirgen, et al. 2014)	23
2.11	Failure mode of composite and hollow specimens (A. Matloub 2009)	29
2.12	Failure modes of group a columns (Kh. El-Sayed et al 2017)	33
2.13	Typical buckling of the filled-steel specimens (Kh. El-Sayed et al 2017)	34
2.14	Comparison of loads (D. Chandrakar et al 2017)	35
2.15	Photographs of typical buckling shapes (N. Kostis et al 2016)	36