

بسم الله الرحمن الرحيم

$\infty\infty\infty$

تم عمل المسح الضوئي لهذة الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

اتوتكنوبوج

ملاحظات:

- بالرسالة صفحات لم ترد بالأصل
 - بعض الصفحات الأصلية تالفة
- بالرسالة صفحات قد تكون مكررة بالرسالة صفحات قد تكون مكررة
 - بالرسالة صفحات قد يكون بها خطأ ترقيم

COMPARATIVE STUDY OF WEBER'S GLANDS IN HUMAN BEINGS AND OTHER ANIMALS

(Histological, Histochemical and Number Identification)

Thesis Submitted for Partial
Fulfillment of Master Degree
In Oral Biology and Oral Pathology

Presented By

Brigitte George Fouad

Demonstrator of Oral Biology Faculty of Dentistry Suez Canal University

Supervisors

Dr. Gamel El-Din Zou El-Hema

Assit. Professor of Oral Biology Cairo University

لعلىر

Dr. Mohamed Badr Hassanin

Assit. Professor of Oral Pathology
Suez Canal University

Dr. Hala Salah El-Din Zaatar

Assit. Professor of Oral Biology Cairo University

ACKNOWLEDGEMENT

Rcknowledgement

I would like to thank Dr. Gamel El-Din Zou El Bema, Assit. Professor of Oral Biology. Cairo University for his help, encouragement and constructive advice.

I am also grateful to Dr. Mohamed Badr Hassanin, Assit. Professor of Oral Pathology Suez Canal University for his help, support and for his Valuable instructions.

I would like to express my appreciation to Dr. Bala Salah El-Din Zaatar, Assit. Professor of Oral Biology, Cairo University for her help and encouragement.

Finally, I have to express my gratitude and thanks to my professors, my colleagues and all who had helped, encouraged and supported me to accomplish this work.

Many Thanks.

To

My Parents ..

My Husband ..

&

My Son.

List of Contents

		
I. Introduction		
II. Review of Literature		
A. Anterior Lingual Salivary Glands		
B. Posterior Lingual Glands		
1. Von Ebner's Posterior Lingual Glands.		
2. The Posterior Weber's Lingual Salivary Glands.		
III. Aim of the study		
IV Materials and Methods		
A.Routine histological studies.		
B. Histochemical studies.		
C. Some measurements carried out on H&E stained		
sections.		
V. Results		
A. Histological findings.		
B. Histochemical findings.		
C. Analysis of all the statistical work.		
VI. Discussion		
VII Summary and Conclusion		
References		
Arabic Summary		

List of Tables

1		
Table 1	Summary for the histochemical results.	48
Table 2A	The means of total length of glands per each sample in the three species	50
Table 2B	The overall mean of length of the glands per each species.	50
Table 2C	The multiple comparison of the total length of the glands among the three species.	51
Table 3A	The means of number of lobes per each section for each sample of the three species.	54
Table 3B	The over all mean of number of lobes per section.	54
Table 3C	The multiple comparison for the number of lobes per section among the three species.	54
Table 4A	The means of number of acini per lobe in different zones of the glands per section in each sample of the three species.	57
Table 4B	The overall mean of number of acini per lobe in different zones per each species.	59
Table 4C	The multiple comparison of number of acini per lobe in different zones of the glands among the three species.	61
Table 5A	The means of number of acini per 1x1 mm ² per section in each sample of the three species.	64
Table 5B	The overall mean of number of acini per 1x1 mm ² per each species.	64
Table 5C	The multiple comparison of number of acini per 1x1 mm ² among the three species.	64

List of Figures

Figure 1	Human Weber glands stained with H&E showing	24
	the whole glands mag. 40x	
Figure 2	Human Weber glands stained with H&E mag.40x	25
Figure 3	Human Weber glands stained with H&E mag.100x	25
Figure 4	Human Weber glands stained with H&E mag.400x	27
Figure 5	Human Weber glands stained with H&E showing duct system mag.200x	27
Figure 6	Rabbit Weber glands stained with H&E showing the whole glands mag 40x	28
Figure 7	Rabbit Weber glands stained with H&E mag.40x	30
Figure 8	Rabbit Weber glands stained with H&E mag.100x	30
Figure 9	Rabbit Weber glands stained with H&E mag.400x	31
Figure 10	Rabbit Weber glands stained with H&E showing the duct system mag.200x	31
Figure 11	Rat Weber glands stained with H&E showing the whole glands mag. 40x	32
Figure 12	Rat Weber glands stained with H&E mag.40x	34
Figure 13	Rat Weber glands stained with H&E mag.100x	34
Figure 14	Rat Weber glands stained with H&E mag.400x	35
Figure 15	Rat Weber glands stained with H&E showing the duct system mag.200x	35

		
Figure 16	Rat Weber glands stained with H&E mag.200x	36
Figure 17	Human Weber glands stained with PAS mag.100x	38
Figure 18	Human Weber glands stained with PAS mag.200x	38
Figure 19	Rabbit Weber glands stained with PAS mag.100x	39
Figure 20	Rabbit Weber glands stained with PAS mag.200x	39
Figure 21	Rat Weber glands stained with PAS mag.100x	41
Figure 22	Rat Weber glands stained with PAS mag.200x	41
Figure 23	Human Weber glands stained with Alcian-PAS mag.100x	42
Figure 24	Human Weber glands stained with Alcian-PAS mag.200x	42
Figure 25	Rabbit Weber glands stained with Alcian-PAS mag.100x	43
Figure 26	Rabbit Weber glands stained with Alcian-PAS mag.200x	43
Figure 27	Rat Weber glands stained with Alcian-PAS mag.100x	44
Figure 28	Rat Weber glands stained with Alcian-PAS mag.200x	44
Figure 29	Human Weber glands stained with Alkaline Fast Green mag.200x	46
Figure 30	Rabbit Weber glands stained with Alkaline Fast Green mag.200x	46

	· · · · · · · · · · · · · · · · · · ·	
Figure 31	Rat Weber glands stained with Alkaline Fast Green mag.400x	47
Figure 32	The antero-posterior and dorsorentral dimension of the glands in the three species	52
	1	
Figure 33	The overall means of the number of lobes per	55
	section among he three species	
	V 1	
Figure 34	The overall mean of number of acini per lobe in	62
	different zones of the glands among the three	
	species	;
		
Figure 35	Number of acini per 1x1 mm ² among the three	65
	species	

INTRODUCTION

I. Introduction

Minor salivary glands are small mucosal exocrine glands. They begin their development during the third month of fetal life, their secretion contributes for about 7% of the total volume of the secreted saliva. It is primarily muco-protein rich secretion with a high secretary IgA concentration.

They are non-encapsulated, consisting of clusters of acini, each is drained by short ducts directly into the oral cavity with accumulation of lymphocytes around the duct walls. They are located within the fibres of connective tissue of the submucosa or muscle fibres of the lip, cheek and tongue.

Minor salivary glands may be serous, mucous or mixed. The moistening and lubricating functions of saliva are performed by its water and glycoproteins content.

The glycoproteins are synthesized mainly by the mucous cells and to a lesser degree by the serous ones, while the fluids produced by the serous glands act as solvents for the substances that stimulate the taste buds and wash away debris.

Saliva has a digestive role, its amylase enzyme starts hydrolysis of carbohydrates inside the mouth before reaching the stomach. The lingual lipase enzyme is capable of hydrolyzing the triglycerides, helping in emulsifying the fats increasing the efficiency of the pancreatic lipase especially in new borns.

Salivary glands also have an antibacterial role defending the oral cavity against pathogens by secreting lactoferrin, lysozyme and peroxidase enzymes, they synthesize the secretory component necessary for the transport of secretory IgA across the oral epithelium.

Minor Salivary Glands are named according to their location as:

A. Labial and Buccal glands:

Are mixed glands predominantly mucous, the labial glands are divided into superior and inferior, the buccal are described as continuation of the labial ones.

B. Palatine glands:

Are pure mucous glands located as glandular aggregates in the submucosa of the postero-lateral region of the hard palate, soft palate and uvula.

C. Glosso palatine glands:

Are pure mucous glands, form part of the mucous ring and are located in the isthmus region in the glosso palatine fold.

- D. Lingual glands: are divided into several groups.
 - i. Anterior lingual glands: (glands of Blandin and Nuhn)

 Located near tongue apex and open on its ventral surface near the lingual frenum, its anterior part is chiefly mucous and its posterior portion is mixed.

ii. The posterior lingual glands:

- a. The posterior von Ebner's lingual glands: are located between muscle fibres of the tongue and open into the trough of the circumivallate and the rudimentary foliate papillae.
- b. The posterior Weber's lingual glands: located lateral and posterior to the circumvallate papillae under the lingual tonsillar tissue, the ducts open on to the dorsal surface.

REVIEW OF LITERATURE