

بسم الله الرحمن الرحيم

00000

تم عمل المسح الضوئي لهذة الرسالة بواسطة / حسام الدين محمد مغربي بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

كات وتكنولوج

ملاحظات:

- بالرسالة صفحات لم ترد بالأصل
- و بعض الصفحات الأصلية تالفة
- بالرسالة صفحات قد تكون مكررة AIN SHAMS UNIVE
 - بالرسالة صفحات قد يكون بها خطأ ترقيم

Myocardial Perfusion Imaging and Functional Assessment for The Efficacy of Rehabilitation Program Post Myocardial Infarction

B188067

Thesis

Submitted in Partial Fulfillment for Doctoral Degree in Physical Therapy

By
Amany Raafat Mohamad
MSc Physical Therapy

سر۱۰۶

Supervisors

Prof. Dr. Naguib M. Salem
Prof. and Chairman of Physiotherapy
Department for Cardiopulmonary and
Geriatric Disorders
Faculty of Physiotherapy- Cairo University

Prof. Dr. Alia H. Abd El-Fattah
Prof. of Critical Care Medicine
Critical Care Medicine
Faculty of Medicine
Cairo University

Prof. Dr. Awny F. Rahmy
Assistant Prof. of Physiotherapy
Department for Cardiopulmonary
and Geriatric Disorders
Faculty of Physiotherapy-Cairo University

Faculty of Physical Therapy
Cairo University
2003

بسم الله الرحمن الرحيم

قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم

صد*ق الله العظيم* البقرة (٣٢)

Amany Raafat Mohamad El-Dash

Myocardial perfusion imaging and functional assessment for the efficacy of rehabilitation program post myocardial infarction

Amany Raafat Mohamad

Supervisors: Prof. Dr. Naguib M. Salem, Prof. Dr. Alia H. Abd El-Fattah, Prof. Dr. Awny F. Rahmy. Cairo University – Faculty of Physical Therapy – Physiotherapy Department for Cardiopulmonary and Geriatric Disorders

Doctoral Thesis: 2003, Around 187 pages

The effect of cardiac rehabilitation on patients in the recovery stage within 2 weeks after the first attack of acute myocardial infarction were assessed in this study. A total of 16 pts with mean age 52 yrs. Admitted to the Critical Care Department, Cairo University. All pts subjected to clinical, laboratory investigations and myocardial perfusion imaging prior and post the intervention of cardiac rehabilitation that included gradual treadmill exercises for 10 weeks with frequency 3 sessions a week. The results of the study revealed the ability of the cardiac rehabilitation to improve the myocardial perfusion and exercise tolerance in our patients even in pts with anterior MI over the age of 50 years.

Keywords: Acute myocardial infarction – myocardial perfusion – cardiac rehabilitation.

Abstract

Cardiac rehabilitation is currently recommended for patients post myocardial infarction; however, the effect of regular exercise training on the patients in the recovery stage within 2 weeks after the first attack of acute myocardial infarction was assessed in this study.

A total of 16 pts (15 male and 1 female) with mean age (52.1±8) yrs admitted to the Critical Care Department, Cairo University with first attack of uncomplicated AMI were studied. All patients subjected to clinical, laboratory investigations and myocardial perfusion imaging prior and post the intervention of cardiac rehabilitation program that incldued graduated treadmill exercise training for 10 weeks with frequency 3 sessions a week. The results of this study revealed the ability of the cardiac rehabilitation program to improve the myocardial perfusion reflected as significant decrease in mean stress score in post study $(15.2\pm8.0 \text{ vs } 20.6\pm8.8)$, rest score $(10.5\pm6.9 \text{ vs } 12.4\pm6.5)$, and difference score (4.7±3.2 vs 8.2±4.2) compared with pre study value, LVEF as significant higher value post study (55.5±11.4 vs 50.6±11.7) compared to pre study value, and exercise tolerance in our patients even in pts with anterior MI over the age of 50 years as there was significant higher value of exercise time post study (9.5±2.2 vs 7.7±2.3) and lower value of resting HR (79.7±11.5 vs 86.9±11.3) compared with the pre study value.

Conclusion: It was confirmed that cardiac rehabilitation in patients post AMI is effective in adjunct to medical treatment for those patients without any further adverse reaction or myocardial damage.

Acknowledgement

First of all, I would like to kneel thanking *ALLAH*, The first most merciful and benificial for giving us patience and skill to conduct this work.

I would like to thank the great *Professor Dr. Naguib M. Salem*, for his encouragement and continuous guidance, he is always innovative, updated, he tought me how to have patience to work not only hard but also in skilled and efficient way. I am really unlimitedly indebted to him.

I would like to thank *Professor Dr. Alia H. Abdel Fattah* for her endless support as this work could not be continued without her effort and sincere help. She always has new ideas, taking new technologies cautiously and courageously, she actively participated in every part concerning this study and tought me to work in a meticulous, skilled way. Really any attempt to define my deepest gratitude to her would be incomplete.

I would like to appreciate *Professor Dr. Awny F. Rahmy* for his supervision and scientific leadership, he participated in this work with great patience and broad minded thinking. I would like to thank him for his support.

Many thanks to great family, they are not only participated in this work as much as i did, but they are every thing in my life specially my father and mother as her love, support, and encouragement have

contributed too much in completing this work. I would never be able to reward her any part of what she gave me.

I carry a big dept to the team of the Critical Care Department and my colleagues in out patient clinic specially *Dr. Bahgat Fawzy*. They were always beside me, encouraging, helping me continuously in completing the study in this form.

I won't forget the help of the team work of the nuclear lab., *Dr. Akram Abd El-Bary and Dr. Wael Samy*, physicists & nursing staff who were always available and helpful.

Many thanks for Mrs. Manal Youssef & Mrs. Neveen Saed in completion of the computer work in a professional and artistic way.

Last but not least I would like to thank the heros of this work, they are the patients for their courage to do the exercise program although they know that it was risky for them but they did it. I am so thankful for them.

List of Figures

No.	Subject	Page
Figure 1	The Anatomic and functional correlates of Prognosis in patients with CAD	38
Figure 2	The three planes used in SPECT are illustrated as they intersect the left ventricle	51
Figure 3	The electrical treadmill used in the study	79
Figure 4	Monitoring of the patient	80
Figure 5	Injection of the isotope at the peak exercise	81
Figure 6	The gamma camera used in imaging of the patients	82
Figure 7	Processing of SPECT images → Short Axis, vertical long axis and Horizontal long axis cuts	83
Figure 8	The scoring system applied in myocardial perfusion imaging	84
Figure 9	Full text of myocardial perfusion imaging of one of our pts showing stress-rest (short axis, vertical long axis, and horizontal long axis slices)	85
Figure 10	Position of the patient on the treadmill	86
Figure 11	Male to female ratio	92

No.	Subject	Page
Figure12	Prevalence of risk factors in pts with acute myocardial infarction	93
Figure 13	Comparison between nuclear parameters value pre and post rehabilitation program	94
Figure 14	Comparison between laboratory parameters values pre and post rehabilitation program	96
Figure 15	Comparison between haemodynamic parameter values pre and post rehabilitation program	97
Figure 16	Comparison between nuclear parameters pre and post rehabilitation program in patients sustained inferior MI	99
Figure 17	comparison between laboratory findings values pre and post rehabilitation program in pts sustained inferior MI	101
Figure 18	Comparison between haemodynamic parameters pre and post rehabilitation program in pts sustained inferior MI	103
Figure 19	Comparison between nuclear parameter values pre and post rehabilitation program in pts sustained anterior MI	104
Figure 20	Comparison between laboratory finding values, pre and post rehabilitation program in pts sustained anterior MI	106
Figure 21	comparison between haemodynamic parameters pre and post rehabilitation program in pts sustained anterior MI	108

No.	Subject	Page
Figure 22	Comparison between patients with inf. MI and ant. MI in nuclear parameters pre and post rehabilitation program	1110
Figure 23	comparison between patients with inf. MI and ant. MI in laboratory findings pre and post rehabilitation program	111
Figure 24	comparison between nuclear parameters value pre and post rehabilitation program in pts with age ≤ 50 yrs	113
Figure 25A	Pre study myocardial perfusion imaging in young age patient	114
Figure 25B	Post study myocardial perfusion imaging in young age patient	115
Figure 26	comparison between laboratory findings pre and post rehabilitation program in pts with age ≤ 50 yrs	117
Figure 27	Comparison between haemodynamic parameters pre and post rehabilitation program in pts with age ≤ 50 yrs	119
Figure 28	comparison between nuclear parameters pre and post rehabilitation program in pts with age > 50 yrs	120
Figure 29A	Pre study myocardial perfusion imaging in old age patient	121

List of Figures

No.	Subject	Page
Figure 29B	Post study myocardial perfusion imaging in old age patient	122
Figure 30	comparison between laboratory finding pre and post rehabilitation program in pts with age > 50 yrs	124
Figure 31	comparison between haemodynamic parameters pre and post rehabilitation programs in pts with age > 50 yrs	125
Figure 32	Comparison between patients with age below 50 years or less and patients with age above 50 years in nuclear parameters pre and post rehabilitation program	127
Figure 33	comparison between patients with age 50 or less and patients with age above 50 years in hemodynamic parameters pre and post rehabilitation program	130

List of Tables

No.	Subject	Page
Table 1	Some basic characteristics of the patients	77
Table 2	Prevalence of risk factors in pts with acute myocardial infarction	93
Table 3	comparison between nuclear parameters value pre and post rehabilitation program	94
Table 4	comparison between laboratory parameters values pre and post rehabilitation program	95
Table 5	comparison between haemodynamic parameter values pre and post rehabilitation program	97
Table 6	Comparison between nuclear parameters pre and post rehabilitation program in patients sustained inferior MI	99
Table 7	comparison between laboratory findings values pre and post rehabilitation program in pts sustained inferior MI	100
Table 8	Comparison between haemodynamic parameters pre and post rehabilitation program in pts sustained inferior MI	102

No.	Subject	Page
Table 9	comparison between nuclear parameter values pre and post rehabilitation program in pts sustained anterior MI	104
Table10	Comparison between laboratory finding values, pre and post rehabilitation program in pts sustained anterior MI	105
Table 11	comparison between haemodynamic parameters pre and post rehabilitation program in pts sustained anterior MI	107
Table 12	comparison between patients with inf. MI and ant. MI in nuclear parameters pre and post rehabilitation program.	109
Table 13	comparison between patients with inf. MI and ant. MI in laboratory findings pre and post rehabilitation program	111
Table 14	comparison between patients with inf. MI and ant. MI in haemodynamic parameters pre and post rehabilitation program	112
Table 15	comparison between nuclear parameters value pre and post rehabilitation program in pts with age ≤ 50 yrs	113

List of Tables

No.	Subject	Page
Table 16	comparison between laboratory findings pre and post rehabilitation program in pts with age ≤ 50 yrs	116
Table 17	comparison between haemodynamic parameters pre and post rehabilitation program in pts with age ≤ 50 yrs	118
Table 18	comparison between nuclear parameters pre and post rehabilitation program in pts with age > 50 yrs	120
Table 19	comparison between laboratory finding pre and post rehabilitation program in pts with age > 50 yrs	123
Table 20	comparison between haemodynamic parameters pre and post rehabilitation programs in pts with age > 50 yrs	125
Table 21	comparison between patients with age below 50 years or less and patients with age above 50 years in nuclear parameters pre and post rehabilitation program	127
Table 22	comparison between patients with age 50 or less and patients with age above 50 years in laboratory finding pre and post rehabilitation program	128
Table 23	comparison between patients with age 50 or less and patients with age above 50 years in hemodynamic parameters pre and post rehabilitation program	129

List of Abbreviation

AMI: Acute myocardial infarction

BRS: Baro reflex sensitivity

CAD: Coronary artery disease

CRP: C-reactive protein

DBP: Diastolic blood pressure

DM: Diabetes mellitus

EDV: End diastolic volume

EF: Ejection fraction

ESV: End systolic volume

FH: Family history

HDL: High density lipoprotein

HL: Hyperlipidemia

HR: Heart rate

HRV: Heart rate variability

HTN: Hypertension

LDL: Low density lipoprotein

LVH: Left ventricular hypertrophy

MI: Myocardial infarction

MPI: Myocardial perfusion imaging

NO: Nitric oxide

SBP: Systolic blood pressure

SPECT: Single photon emission computed tomography