

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

"Analytical Study on Certain Drugs For Treatment of Conjunctivitis"

A Thesis

Presented for the partial fulfillment of Master's Degree in Pharmaceutical Sciences
(Pharmaceutical Analytical Chemistry)

By

Passant Mohamed Hussein Medhat

B.Sc.in Pharmaceutical Sciences, Ain Shams University 2014
Teaching Assistant in Analytical Chemistry Department
Faculty of Pharmacy, October University for Modern Sciences and Arts
(MSA)

Under Supervision of

Prof.Dr. Miriam Farid Ayad

Professor of Analytical chemistry, Faculty of Pharmacy, Ain Shams University

Assoc.Prof.Dr. Nermine Victor Fares

Associate Professor of Analytical chemistry, Faculty of Pharmacy, Ain Shams University

Assoc.Prof.Dr. Christine Maged El Maraghy

Associate Professor of Analytical chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA)

Department of Pharmaceutical Analytical Chemistry

Faculty of Pharmacy

Ain Shams University

(2022)

Acknowledgement

No words can ever express my sincere gratitude to "ALLAH" who guide, aid and bless me in every step in my life.

I am deeply grateful to *Prof. Dr. Miriam Farid Ayad*, Professor of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, for her valuable efforts in suggesting the point, constant advising and constructive comments. I could not have imagined having a better advisor and mentor for my research. It's a pleasure for me to be one of her students.

In my journey towards the degree, I found a teacher, an inspiration, a role model a pillar of support, *Associate Prof. Dr.Nermine Victor Fares*, Associate Professor of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University. I am greatly indepted for her patience, keen interest, kind guidance, constant advice and sincere help throughout the whole study. It's a pleasure for me to be one of her students.

I would like to offer special thanks to *Associate Prof. Dr.Christine Maged El Maraghy*, Associate Professor of Analytical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), for her supervision and valuable efforts and comments in throughout the whole study. It's a pleasure for me to be one of her students.

My acknowledgement would be incomplete without thanking the biggest source of my strength, my family. I must express my very profound gratitude to my parents,

Dr. Mohamed Medhat & Dr. Eman El Khatat and my brother Dr. Mohab Medhat for their continuous and unparalleled love, help and support.

My deep and sincere gratitude to my beloved husband *Captain Mahmoud* for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis.

My deepest gratitude to my son *Youssef*, his presence in my life has been a blessing and gave me reason to go forward. This accomplishment would not have been possible without them.

I would like to express my gratitude to *Prof. Dr.Dalia Mamdouh* and *Associate Prof. Dr. Sarah Salah* and *Dr. Sherif Okeil* for their great help and support.

Thank you for your support, prayers and believing I can go through with this thesis.

Thank you, Passant Medhat

Table of contents

Page

List of Tables	X
List of Figures	XV
List of Abbreviations	XX
Preface	xxii
List of publications	xxiv
Summary	xxvi

PART (I): Introduction and Literature Review

I.1. Conjunctivitis	2
I.2. Medications	2
I.2.1. Antibiotics	3
I.2.2. Corticosteroids	5
I.2.3. Antihistaminics	7
I.3.Sytemic side effects of Eye drops	7
I.4. The studied drugs	10
I.4.1. Prednisolone Acetate	10
I.4.1.1. Structure	10
I.4.1.2. Physical properties	10
I.4.1.3.Mechanism of action	11
I.4.1.4. Stability of Prednisolone Acetate	11
I.4.1.5. Methods of analysis of Prednisolone Acetate	11
I.4.1.5.1. Spectroscopic methods	11
I.4.1.5.2. Chromatographic methods	14
I.4.1.5.3. Electrochemical methods	20
I.4.2. Sulfacetamide Sodium	22
I.4.2.1. Structure	22
I.4.2.2. Physical properties	22
I.4.2.3.Mechanism of action	22
I.4.2.4. Stability of Sulfacetamide Sodium	23
I.4.2.5. Methods of analysis of Sulfacetamide Sodium	23
I.4.2.5.1. Spectroscopic methods	23
I.4.2.5.2. Chromatographic methods	25
I.4.2.5.3. Electrochemical Methods	31

I.4.3. Tobramycin sulfate	32
I.4.3.1. Structure	32
I.4.3.2.Physical properties	32
I.4.3.3.Mechanism of action	33
I.4.3.4. Stability of Tobramycin Sulfate	33
I.4.3.5. Methods of analysis of Tobramycin Sulfate	33
I.4.3.5.1. Spectroscopic methods	33
I.4.3.5.2. Chromatographic methods	37
I.4.3.5.3. Electrochemical Methods	47

PART (II): Spectrophotometric Methods for Determination of Certain Drugs Used in Treatment of Conjunctivitis.

Section (A): Spectrophotometric Methods for Simultaneous Determination of Prednisolone acetate and Sulfacetamide sodium in Bulk Powder and in their Combined Dosage Form.

II.A.1. Introduction	51
II.A.1.1. Theoretical background	51
II.A.1.1. Response correlation	52
II.A.1.1.2. Amplitude modulation spectrophotometric method	54
II.A.1.1.3. Ratio-subtraction spectrophotometric method coupled with	56
constant multiplication (RS-CM)	
II.A.1.1.4. Ratio-difference spectrophotometric method coupled with	57
constant multiplication (RD-CM)	
II.A.2.Experimental study	58
II.A.2.1.Instrumentation	58
II.A.2.2.Samples	58
II.A.2.2.1.Pure samples	58
II.A.2.2.2.Market samples	58
II.A.2.3. Reagents	59
II.A.2.4. Standard solutions	59
II.A.2.4.1. Stock standard solution	59
II.A.2.4.2. Working solution	59
II.A.2.5. Procedure	60
II.A.2.5.1.Spectral characteristics of Prednisolone acetate and	60
Sulfacetamide sodium:	
II.A.2.5.2. Method validation	60
1.Linearity	60
1.(a).Response correlation method (RC)	60

1.(b).Amplitude modulation method (AM)	61
1.(c).Ratio subtraction method coupled with constant multiplication	61
(RS-CM)	
1.(d).Ratio difference method coupled with constant multiplication	62
(RD-CM)	
2. Accuracy	63
3.Precision	63
4.Specificity	64
5. Limit of detection (LOD) and limit of quantitation (LOQ)	64
II.A.2.5.3. Assay of Blephamide ophthalmic suspension	64
II.A.3. Results and discussion	65
II.A.3.(a). Response correlation method(RC)	66
II.A.3.(b). Amplitude modulation method (AM)	68
II.A.3.(c).Ratio subtraction method coupled with constant	70
multiplication (RS-CM)	
II.A.3.(d).Ratio difference method coupled with constant multiplication	71
(RD-CM)	
II.A.3.1. Method validation	72
II.A.3.2. Application to pharmaceutical formulations and statistical	74
comparison	
II.A.4.Conclusion	75

Section (B): Efficient Absorbance Quenching of PVP-capped Silver Nanoparticles for Determination of Tobramycin sulphate in its Pharmaceutical Dosage Form and Spiked Human Plasma.

II.B.1. Introduction	96
II.B.2. Experimental study	97
II.B.2.1. Instrumentation	97
II.B.2.2. Samples	98
II.B.2.2.1.Pure Samples	98
II.B.2.2.2.Market samples	98
II.B.2.3. Chemicals and Reagents	98
II.B.2.4. Standard solutions	99
II.B.2.4.1.Stock standard solution	99
II.B.2.4.2.Working solution	99
II.B.2.4.3. Preparation of Silver nanoparticle solution. (862.96 µg/mL)	99
II.A.2.5. Procedures	100
II.A.2.5.1.Absorbance quenching produced by TOBRA-PVP-AgNPs	100
reaction.	

II.A.2.5.2. Optimization of the reaction conditions	100
II.A.2.5.2.1.Influence of buffer type on the absorbance quenching of	101
TOBRA-AgNPs reaction.	
II.B.2.5.2.2.Effect of pH on the absorbance quenching of TOBRA-	101
AgNPs reaction.	
II.B.2.5.2.3.Effect of silver nanoparticles concentration on the	101
absorbance quenching of TOBRA-AgNPs reaction.	
II.B.2.5.2.4 Effect of reaction time on the absorbance quenching of	101
TOBRA- PVP-AgNPs reaction	
II.B.2.5.3. Method Validation	102
1. Linearity	102
2.Accuracy	102
3.Precision	102
4. Limit of detection (LOD) and limit of quantitation (LOQ)	103
II.B.2.5.4. Application to Pharmaceutical preparation	103
II.B.2.5.4.1. Ophthalmic solution.	103
II.B.2.5.4.2. Ophthalmic Ointment.	103
II.B.2.5.4.3. Spiked human plasma.	104
II.B.3. Results and discussion	104
II.B.3.1.Characterization of silver nanoparticle	105
II.B.3.2.Method development and optimization	105
II.B.3.2.1.Study of effect of different factors on absorbance quenching	106
II.B.3.2.1.1.Influence of buffer type on the absorbance quenching of	106
TOBRA-AgNPs reaction	100
II.B.3.2.1.2.Effect of pH on the absorbance quenching of TOBRA-	106
AgNPs reaction	100
II.B.3.2.1.3.Effect of silver nanoparticles concentration on the	106
absorbance quenching of TOBRA-AgNPs reaction	100
II.B. 3.2.1.4.Effect of reaction time on the absorbance quenching of	107
TOBRA- PVP-AgNPs reaction	107
II.B.3.2.2.Optimization of conditions using quality by design	107
II.B.3.2.3. Analysis of the results	108
II.B.3.2.4.Studied factors and their interactions.	109
II.B.3.3.Method Validation	111
II.B.3.4.Application of the proposed method for analysis of the	112
pharmaceutical formulation and spiked human plasma.	-
II.B.3.5.Statistical comparison	112
II.B.4. Conclusion	112

PART (III): Electrochemical Methods for Determination of Certain Drugs Used in Treatment of Conjunctivitis.

Section (A): Potentiometric Method for Determination of Tobramycin sulfate using Bare, Carbon nanodots and Silver Nanoparticles Modified Carbon Paste Electrodes in its Pharmaceutical Dosage Form and Spiked Human Plasma.

III.A.1. Introduction	134
III.A.2. Experimental study	139
III.A.2.1. Instrumentation	139
III.A.2.2. Materials	140
III.A.2.2.1. Pure samples	140
III.A.2.2.2. Pharmaceutical formulation	140
III.A.2.2.3. Chemicals and reagents	140
III.A.2.2.4. Standard solutions	141
III.A.2.2.4.1. Tobramycin sulfate standard stock solution	141
III.A.2.2.4.2. Tobramycin sulfate working standard solution	141
III.A.2.3. Procedure	142
III.A.2.3.1. Preparation of C-dots by microwave-assisted method	142
III.A.2.3.2. Preparation of C-dots by hydrothermal method	142
III.A.2.3.3. Preparation of the ion-Pair	143
III.A.2.3.4. Sensors fabrication	143
III.A.2.3.4.1. Bare Carbon Paste Electrode (Bare-CPE)	143
III.A.2.3.4.2. Silver Nanoparticles Modified Carbon Paste Electrode	143
(AgNPs-CPE)	
III.A.2.3.4.3. C-dots Modified Carbon Paste Electrode (C-dots-CPE)	144
III.A.2.3.5. Potentiometric Cell—Assembly	144
III.A.2.3.6. Electrodes calibration	144
III.A.2.3.7. Application to pharmaceutical formulation	144
III.A.2.3.8. Application to spiked human plasma	145
III.A.2.3.9. Study of experimental conditions	145
III.A.2.3.9.1. Identification of slope, response time and operative life of	145
the proposed sensor	
III.A.2.3.9.2. Effect of pH	146
III.A.2.3.9.3 Effect of foreign compounds	146
III.A.3. Results and discussion	146
III.A.3.1. Characterization of the synthesized c-dots	146
III.A.3.2. Electrodes fabrication	148
III.A.3.2.1. Optimization of the modified CPE composition	148
III.A.3.3. Optimization of the working pH	150

HI A 2 A D. C	150
III.A.3.4. Performance characteristics of the Bare-CPE, AgNPs-CPE,	150
and C-dots-CPE	
III.A.3.5. Effect of foreign compounds	152
III.A.3.6. Water-layer test	153
III.A.3.7.Application of the proposed electrodes for analysis of	153
Lotepred® T ophthalmic solution and spiked human plasma	
III.A.3.8. Statistical comparison	154
III.A.4.Conclusion	154

Section (B): Determination of Sulfacetamide sodium by Cobalt Based Nanoparticles Coated Graphite Sensors in Dosage Form and Aqueous Humor.

III.B.1. Introduction	168
III.B.2. Experimental study	169
III.B.2.1. Apparatus	169
III.B.2.2. Materials	170
III.B.2.2.1 Samples	170
III.B.2.2.1.1 Pure sample	170
III.B.2.2.1.2 Market samples	170
III.B.2.2.2. Reagents	170
III.B.2.2.3. Standard solutions	171
III.B.2.2.3.1. Standard stock solution	171
III.B.2.2.3.2. Working standard solutions	172
III.B.2.3. Procedures	172
III.B.2.3.1.Membrane preparation for the Bare graphite electrode	172
III.B.2.3.2.Membrane preparation for the Cobalt nanoparticles modified	172
graphite electrode	
III.B.2.3.3. Electrode assembly	172
III.B.2.3.4. Potentiometric Cell—Assembly	173
III.B.2.3.5. Electrodes calibration	173
III.B.2.3.6. Application to pharmaceutical dosage form	173
III.B.2.3.7 Application to spiked rabbit aqueous humor	173
III.B.2.3.8. Study of experimental condition	174
III.B.2.3.8.1. Identification of slope, response time and operative life of	174
the studied sensor	
III.B.2.3.8.2. Effect of pH	175
III.B.2.3.8.3. Effect of foreign compounds	175
III.B.3. Result and discussion	175
III.B.3.1. Characterization of the Cobalt oxide nanoparticles	175

III.B.3.2. Fabrication and composition optimization of graphite based	176
sensors	l
III.B.3.2.1. Effect of ion-exchange type and amount	176
III.B.3.2.2. Effect of plasticizer	177
III.B.3.2.3. Optimization of the modified graphite electrode composition	177
III.B.3.3. Effect of the working pH	178
III.B.3.4. Performance characteristics of the Bare graphite electrode and	179
CoNPs modified graphite electrode	l
III.B.3.5. Effect of foreign compounds	180
III.B.3.6. Water-layer test	180
III.B.3.7. Application of the proposed electrodes for analysis of	181
Blephamide® Ophthalmic suspension and spiked rabbit aqueous humor	l
III.B.3.8. Statistical comparison	182
III.B.4. Conclusion	182

PART (IV): Chromatographic Methods for Determination of Certain Drugs Used in Treatment of Conjunctivitis.

Section (A): TLC-densitometric Method for Simultaneous Determination of Prednisolone acetate and Sulfacetamide sodium in their Combined Dosage Form Followed by their Finger Prints Evaluation by Online HPTLC–ESI-MS.

IV.A.1. Introduction	195
IV.A.2. Experimental study	197
IV.A.2.1. Instrument	197
IV.A.2.2. Materials	197
IV.A.2.2.1. Pure standard	197
IV.A.2.2.2 Pharmaceutical dosage form	197
IV.A.2.2.3 Chemicals and reagents	197
IV.A.2.2.4. Standard solutions	198
IV.A.2.2.4.1. Stock standard solutions	198
IV.A.2.2.4.2. Working solution preparation	198
IV.A.2.3. Procedures	198
IV.A.2.3.1. Chromatographic conditions	198
IV.A.2.3.2. Method validation	199
1. Linearity and construction of calibration graphs	199
2. Accuracy	199
3. Precision	199
4. Specificity	200
5. Robustness	200

IV.A.2.3.3. Application to a pharmaceutical dosage form	200
IV.A.3. Result and discussion	201
IV.A.3.1. Optimization of chromatographic conditions.	201
IV.A.3.2. Method validation	201
IV.3.3 Application to pharmaceutical formulation	202
IV.A.3.4. Statistical analysis of results	203
IV.A.3.5.Finger prints evaluation using Online HPTLC–ESI-MS	203
IV.A.4.Conclusion	203

Section (B): HPLC-PDA Method for Simultaneous Determination of Prednisolone acetate and Sulfacetamide sodium in Bulk, Pharmaceutical Dosage Form and Spiked Rabbit Aqueous Humor

IV.B.1. Introduction	215
	215
IV.B.2. Experimental study IV.B.2.1. Instrumentation	216
IV.B.2.2. Samples	216
IV.B.2.2.1. Pure samples	216
IV.B.2.2.2. Market samples	216
IV.B.2.3. Reagents	216
IV.B.2.4.Standard solutions	217
IV.B.2.4.1.Stock standard solution	217
IV.B.2.4.2.Working solutions	217
IV.B.2.4.3. Spiked rabbit aqueous humor samples preparation	217
IV.B.2.5. Procedure	218
IV.B.2.5.1. Chromatographic conditions	218
IV.B.2.5.2. Method validation	218
1.Linearity and construction of calibration graphs	218
2.Accuracy	219
3.Precision	219
4.Specificity	219
5.Robustness	220
6.LOD and LOQ	220
IV.B.2.5.3.Application to a pharmaceutical dosage form	220
IV.B.2.5.4.Application to spiked rabbit aqueous humor	220
IV.B.3.Results and discussion	221
IV.B.3.1.Optimization of chromatographic conditions	221
IV.B.3.2.Method validation for standard solution	222
IV.B.3.3.Method validation for spiked biological samples	224
IV.B.3.4.Application to pharmaceutical formulation	226

Table of Contents

IV.B.3.5.Statistical analysis of results	227
IV.B.4.Conclusion	227

PART (V): Greenness Assessment

V.1. Introduction	239
V.2.Conclusion and General discussion	240
V.2.1.Greenness assessment of the proposed methods	240
V.2.1.1.The proposed spectrophotometric methods	241
V.2.1.2.The proposed absorbance quenching method using silver	241
nanoparticles	241
V.2.1.3.The proposed potentiometric sensors	242
V.2.1.3.1.The three proposed carbon paste electrodes	242
V. 2.1.3.2.The two proposed coated graphite electrode	243
V.2.1.4. The proposed TLC-densitometric method	244
V.2.1.5. The proposed HPLC-PDA method	244

PART (VI): General Discussion

References

List of Tables

Table 1.Some of commonly used antibiotics for conjunctivitis treatment3
Table 2.Most commonly used corticosteroids for conjunctivitis treatment5
Table 3. Most commonly used anti-histaminics
Table 4.The possible systemic and topical side effects for some drug classes of
eye drops that are frequently prescribed.
Table 5. Gas chromatographic methods for determination of Prednisolone
acetate14
Table 6. HPTLC methods for determination of Prednisolone acetate15
Table 7. HPLC methods for determination of Prednisolone acetate
Table 8. Gas chromatographic methods for determination of Sulfacetamide
sodium
Table 9. HPTLC methods for determination of Sulfacetamide sodium26
Table 10. HPLC methods for determination of Sulfacetamide sodium27
Table 11. Gas chromatographic methods for determination of Tobramycin
sulphate37
Table 12. HPTLC methods for determination of Tobramycin sulphate37
Table 13. HPLC methods for determination of Tobramycin sulphate39
Table 14. Assay validation parameters for determination of pure samples of
PRED & SULF by the proposed methods
Table 15. Accuracy results of Prednisolone acetate using the four proposed
methods90
Table 16. Accuracy results of Sulfacetamide sodium using the four proposed
methods
Table 17. Determination of Prednisolone acetate in presence of Sulfacetamide
sodium in lab prepared mixtures by the proposed spectrophotometric methods.
92

Table 18.Determination of Prednisolone acetate and Sulfacetamide sodium in
pharmaceutical dosage form and the application of standard addition technique
of the proposed methods93
Table 19.Statistical comparison of the proposed methods and the reference
method of Prednisolone acetate and Sulfacetamide sodium in their pure
powdered form
Table 20. The three variables at two levels that were chosen for optimization of
conditions by QBD125
Table 21. The 2 ³ full factorial design showing the used levels of factors126
Table 22. ANOVA results of the proposed full factorial model
Table 23. Results of assay validation of pure samples of Tobramycin sulphate
by the suggested spectrophotometric method128
Table 24. Accuracy results of Tobramycin sulphate by our proposed method.
Table 25. Determination of Tobramycin sulphate in pharmaceutical dosage
forms and the application of standard addition technique of the proposed
method
Table 26. Determination of Tobramycin sulfate in spiked human plasma131
Table 27. Statistical comparison of the proposed method and the reference
method of Tobramycin sulphate in their pure powdered form131
Table 28. Performance characteristics of the three fabricated electrodes for
determination of Tobramycin sulphate163
Table 29. Comparison between the proposed Bare, AgNp-modified and C-dots-
modified Carbon paste electrodes and other reported sensors as Aptamar based
Gold Sensor and β -Cyclodextrin-based sensor
Table 30. Selectivity coefficients $(K_{TOBRA,interferent}^{pot})$ of the three proposed
CPE using matched potential method (MPM)

Table 31. Determination of Tobramycin sulfate in Lotepred T Ophthalmic
Solution and spiked human plasma using the proposed electrodes165
Table 32.Statistical comparison between the proposed methods and the
reference method of Tobramycin sulfate in its pure form166
Table 33. Performance characteristics of the two fabricated electrodes189
Table 34. Selectivity coefficients $(K_{SULF,interferent}^{pot})$ of the two suggested
graphite electrodes using matched potential method (MPM)190
Table 35. Determination of Sulfacetamide sodium in Blephamide® ophthalmic
suspension using Bare-graphite and CoNPs-modified graphite electrode 191
Table 36. Determination of Sulfacetamide sodium in spiked aqueous humor
samples using CoNPs-modified graphite electrode191
Table 37. Statistical comparison between the proposed methods and the
reference method of Sulfacetamide sodium in its pure form192
Table 38. Assay validation parameters of the proposed TLC-densitometric
method for determination of Prednisolone acetate and Sulfacetamide sodium.
Table 39. Accuracy of the proposed TLC-densitometric method for the
determination of Prednisolone acetate and Sulfacetamide sodium in bulk
powder
Table 40. Determination of Prednisolone acetate and Sulfacetamide sodium in
laboratory prepared mixtures by the proposed TLC-densitometric method211
Table 41. System suitability parameters of the proposed TLC-densitometric
method
Table 42. Determination of Prednisolone acetate and Sulfacetamide sodium in
pharmaceutical dosage form and the application of standard addition technique
of the proposed TLC-densitometric method 212