

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

Ain Shams University Faculty of Engineering Architecture Engineering Department

Evaluating the Use of Environment Friendly Recycled Building Materials in Egypt

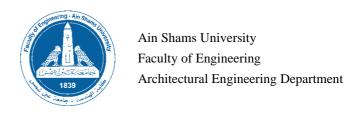
A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Architectural Engineering (Architecture Engineering)

By

Rahma Kamal Dawoud Fahmy Gomaa

Bachelor of Science in Architectural Engineering
(Architecture Engineering)
Faculty of Engineering, Ain Shams University, 2022

Under Supervision


Professor Dr. Ahmed Atef El Desouky Faggal

Professor of Architecture and Environmental Control
Ain Shams University

Assist. Professor Dr. Abeer Muhammed Mostafa Eissa

Assistant Professor of Architecture and Environmental Control Ain Shams University

Cairo - (2022)

Thesis Title: Evaluating the Use of Environment Friendly Recycled Building Materials in Egypt

Degree: Master of Science Degree in Architectural Engineering

Thesis Defence Date:/.......

The Jury Committee: Signature

Prof. Dr. Ayman Hassaan Ahmed

Professor of Landscape Architecture,
Head of Architectural Engineering Department,
Faculty of Engineering, Cairo University.

Prof. Dr. Morad Abdelkader Abdelmohsen

Professor of Architecture and Environmental Control,
Department of Architecture, Faculty of Engineering,
Ain Shams University.

Name: Rahma Kamal Dawoud Fahmy Gomaa

Prof. Dr. Ahmed Atef Eldesouky Faggal

Ain Shams University.

Post Graduate Studies:

Professor of Architecture and Environmental Control, Department of Architecture, Faculty of Engineering,

Approval Stamp Faculty Council Approval/..... The Thesis was Approved on University Council Approval/.....

Disclaimer

This thesis is submitted as partial fulfillment of M.Sc. degree in Architecture, Faculty of Engineering, Ain Shams University.

The work included in this thesis was carried out by the author and no part of it has been submitted for a degree or qualification at any other scientific entity. The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others.

Name:	Rahma Kamal Dawoud Fahmy Gomaa.
Signature:	
Date:	

Acknowledgement

At first, I am totally thankful for Allah for helping me through the hard times and for rewarding me with such a milestone in my academic life Alhamdulillah. May God make this step beneficial to others.

Then, I would like to express my appreciation and gratitude to my supervisors.

To the dear Prof. Ahmed Atef Faggal... this work would have never been done without your guidance, patience, knowledge and continuous encouragement.

To the dear Dr. Abeer Muhammed Mostafa... your endless patience, advice, knowledge and support were always a push up.

My special thanks are extended to Prof. Morad Abdelkader Abdelmohsen and Prof. Ayman Hassan Ahmed for their valuable discussion and feedback.

I would like to thank all great FEDA staff who supported me directly or indirectly. I am very grateful to all who gave me advice throughout this journey. Really, I am proud to be part of this great team.

I would also love to show my sincere gratitude for the dear Prof. Hanan Sabry whose guidance and knowledge have always been valuable and respected. And for the dear Prof. Laila Khodeir for continues advice and support.

Also, I dedicate a special thanks to my friends Nada Tarek, Nora Al Amin, Mirna Wael, Shaimaa Tarek, Reem Othman, Lamis Khalil, Aya Walid, Aya Shaheen, Israa Ahmed and Dalia Niazy who gave the hand of help and support in the hard times.

Most of all, I am greatly indebted to my family for their continuous love, care and support. I owe them everything and I will keep doing my best to keep them always proud.

I would also love to show my gratitude for my precious man, Muhammed, for believing in me and giving me great support and care.

Finally, special thanks to my friends Mai Al Shafi'I, Doaa Selim, Roba Hassan and Basma Alaa, who always encourage & support me.

Abstract

Building materials are all over the place. They create the built environment. Choosing the appropriate material is a necessary step in the design process of the product, as the reliability of the design relies on the chosen materials. Materials have cultural, moral, social and environmental impacts that affect the user experience. Depending on recycled materials helps to achieve a better environmental performance with less energy consumption and construction cost.

This research aims at defining recycled materials and evaluating their performance to raise awareness about the benefits of using these materials in building sector. Proving that, recycled building materials have the potential to offer a better environmental performance of the building with less energy consumption and less cost in comparison with using conventional building materials. In addition to that, recycled materials have the potential to close the circle in the life cycle of the building. On the other side, Egypt has a potential to use waste materials and develop recycling process depending on the available amount of waste materials that can be recycled instead of being thrown in landfills causing environment pollution. The research addresses the environmental performance of recycled materials in three different climatic regions in Egypt (Cairo, Alexandria and Aswan).

The thesis consists of two parts and ends with conclusion and recommendations. The first part was a theoretical study of; building materials and their classifications and their impacts on the environment as introduced in in (Chapter 1), the use of some commonly used conventional building materials in Egypt and their availability and impacts on the environment as introduced in in (Chapter 2), alternative building materials which depend mainly on recycled materials or materials with recycled content and their availability in Egypt and impacts on the environment as well as introduced in (Chapter 3). In The second part of the thesis an office space in three climatic regions in Egypt (Alexandria, Cairo and Aswan) was selected as a base case and its environmental performance was analyzed. The effect of using glass panels with recycled content in facades on building performance is analyzed through thermal simulations applied on the case study, results were compared to the base case results (Chapter 4).

The simulation software used in this study was Design Builder for modelling, and Energy Plus as an engine for the analysis. The duration of the experiment was chosen to be the working hours of the day.

The scope of the research was limited to study only two different types of materials which are with recycled content (Glass Panels with Recycled Content in Building Facades and the second materials are cement bricks with recycled content of rice straw). The impact of using these materials with recycled content on building performance was studied in all days around the year in the three climatic regions in Egypt.

Keywords: Building Materials, Waste Materials, Recycled Materials, Building Performance, Environmental Performance, Energy Consumption, Design Process, Construction Process, Design Builder; Energy Plus.

List of Contents

Acknowledge	e ment i
Abstract	iii
List of Conte	entsv
List of Figur	esx
List of Table	s xv
List of Acror	nymsxvii
Introduction	xxi
Overview	xxiii
Problem State	ement xxvi
Research Ain	and Objectivesxxvii
Research Met	hodologyxxvii
Research Sco	pe and Limitationsxxviii
Research Stru	octurexxix
1 Chapte	er 1: Environmental Impacts of Building Materials 1
1.1 Intro	oduction1
1.2 Buile	ding Materials Properties
1.2.1 Phys	sical Properties
1.2.2 Mec	hanical Properties3
1.3	Classification of Building Materials
1.3.1	Classification Based on Building Phase4
1.3.1.1	Pre-Building Phase
1.3.1.2	Building Phase
1.3.1.3	Post-Building Phase
1.3.2	Classification Based on Usage Fields
1.3.2.1	Building Materials for Basic Construction
1.3.2.2	Special Purpose Building Materials
1.3.2.3	Protective Building Materials

1.3.2.	4 Decorative Building Materials	7
1.3.3	Classification Based on Materials Source	7
1.3.3.	1 Natural Building Materials	7
1.3.3.	2 Synthetic Building Materials	9
1.3.4 Materia	Classification Based on Improvements Made on Synthetic Buil ls12	ding
1.3.4.	1 Conventional Building Materials	12
1.3.4.	2 Innovations in Conventional Materials	13
1.3.4.	3 Alternative Recycled Building Materials	14
1.3.5	Classification Based on Materials Origin	15
1.3.6	Classification Based on Usage Value	16
1.3.6.	1 Classification A	16
1.3.6.	2 Classification B	16
1.3.6.	3 Classification C	17
1.4	Impacts of Construction Sector on the Environment	17
1.4.1	Impacts on Materials Consumption	
1.4.2	Impacts on Energy Consumption	
1.4.3	Impacts on Carbon Emission Rates	21
1.4.4	Impacts on Greenhouse Gases Rates	22
1.5	Conclusion	24
Chantan	2: Environmental Impacts of Conventional Building Materia	la in
_	t	
2.1	Introduction	
2.2	Use of Conventional Building Materials in Building Elements i	
2.2.1	Bricks as Building Materials	29
2.2.1.	1 Impact of Bricks Manufacturing Process on the Environment	32
2.2.2 2.2.2.	Mortar as a Building Material 1 Impact of Mortar Manufacturing Process on the Environment	
2.2.3 2.2.3.	Glass as a Building Material	
2.2.4	Plastic Materials as Building Materials	
	1 Impact of Plastic Materials Manufacturing Process on the onment	
2.3	Conclusion	49

2

3	- I	er 5: Alternative Environment Friendly Building Materials in	
	3.1	Introduction	. 53
	3.2	The Need for Environment Friendly Building Materials	. 54
	3.3 Available	Alternative Environment Friendly Recycled Building Materials in Egypt	. 56
	3.3.1	Bricks with Recycled Content	. 57
	3.3.1.1	Use of rice straw in Construction Sector	. 57
	3.3.1.2	Impact of Using Recycled Chopped Rice Straw in Cement Bricks	s 59
	3.3.2	Recycled Cement Mortar	. 62
	3.3.2.1	Use of Recycled Cement Mortar in Construction Sector	. 63
	3.3.2.2	Impact of Using Fine Recycled Concrete Aggregate	. 64
	3.3.3	Recycled Glass	. 66
	3.3.3.1	Use of Recycled Glass in Construction Sector	. 66
	3.3.3.2	Impact of Using Recycled Glass	. 68
	3.3.4	Recycled Plastic materials	. 70
	3.3.4.1	Use of Recycled Plastic Materials in Construction Sector	. 71
	3.3.4.2	Impact of Using Recycled Plastic Materials	. 77
	3.4 Building M	Constrains of Using Alternative Environment Friendly Recycled Materials in Egypt	
	3.5	Conclusion	. 80
4	Chapt	er 4: Evaluating the Use of Materials with Recycled Content	83
	4.1	Introduction	. 85
	4.2	Climate Description of Egypt	. 87
	4.2.1	Weather Data Files	. 90
	4.3	Climatic Characteristics of Selected Studied Cities	. 91
	4.4	Selection of The Used Energy Modeling software	. 92
	4.5	Base Case Specifications	. 93
	4.5.1	Base Case Geometry	. 93
	4.5.2	Base Case Construction Materials	. 94
	4.5.2.1	Evaluating Glazing type Used in Building Facades	. 94

A)	Evaluating the Use of Conventional Glazing Material	94
B)	Evaluating the Use of Glazing Material with Recycled Content	97
2	4.5.2.2 Evaluating Bricks type Used in Building External Walls	99
A)	Evaluating the Use of Conventional Cement Bricks	99
B)	Evaluating the Use of Rice Straw - Cementitious Composites of Br 100	icks
4.6	Base Case Assigned Template	102
4.7	Base Case Results	102
4.8	Simulation Results	104
4.8 Co	8.1 Evaluation of Using Conventional Glazing Material Type in omparison with Glazing Material Type with Recycled Content	104
۷	4.8.1.1 Cairo City	104
A)	Annual Heat Gained Through Glazing in Facades	104
B)	Discomfort Summer Time	105
C)	Annual Energy Consumption	106
a)	District Heating	106
b)	District Cooling	107
۷	4.8.1.2 Alexandria City	108
A)	Annual Heat Gained Through Glazing in Facades	108
B)	Discomfort Summer Time	109
C)	Annual Energy Consumption	110
a)	District Heating	110
b)	District Cooling	111
۷	4.8.1.3 Aswan City	112
A)	Annual Heat Gained Through Glazing in Facades	112
B)	Discomfort Summer Time	113
C)	Annual Energy Consumption	114
a)	District Heating	114
b)	District Cooling	115
4.8 Br	8.2 Evaluation of Using Conventional Brick Type in Comparison ick Type with Recycled Content	
۷	4.8.2.1 Cairo City	116
A)	Discomfort Summer Time	116
B)	Annual Energy Consumption	117