

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

Cairo University Faculty of Veterinary Medicine

Bacteriological and molecular studies on Mycobacterium species in cattle

A thesis presented by

Sayed Muhammed Sayed Hassan

(B.V. Sc. Fac. Vet. Med. Beni-Suef Univ. 2010) (M.V. Sc. Fac. Vet. Med. Cairo Univ. 2015) For the Ph.D. degree in Veterinary Medical Sciences

Microbiology

Under supervision of

Prof. Dr. Ahmed Samir Mohammed

Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Khaled Abd El-Aziz

Professor of Zoonoses
Faculty of Veterinary Medicine
Cairo University

Dr. Attia El-Gedawy

Chief Researcher of Bacteriology Animal Health Research Institute Cairo University Faculty of Veterinary Medicine Department of Microbiology

Approval sheet

This to approve that the dissertation by:

Sayed Muhammed Sayed Hassan to Cairo University for the degree of Ph.D. in Veterinary Medical Sciences, (Bacteriology, Immunology and Mycology) has been approved by the examining committee:

Signature

Prof. Dr. Ashraf Awaad Abd El-Twaab

Professor of Microbiology Faculty of Veterinary Medicine Benha University

Prof. Dr. Jakeen K. Abd El-Haleem El-Jakee

Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Prof. Dr. Ahmed Samir Mohamed Shehata

Professor of Microbiology Faculty of Veterinary Medicine

Cairo University

Prof. Dr. Khaled Abd El-Aziz Abd El-Moein

Professor of Zoonoses

Faculty of Veterinary Medicine

Cairo University

Prof. Dr. Attia Abd Allah El-Gedawy
Chief Researcher of Bacteriology

Animal Health Research Institute

Ashr & Awad

Date: 24 / 8 / 2022

Supervision sheet

Prof. Dr. Ahmed Samir Mohammed Shehata

Professor of Microbiology
Faculty of Veterinary Medicine
Cairo University

Prof. Dr. Khaled Abd El-Aziz Abd El-Moein

Professor of Zoonosis
Faculty of Veterinary Medicine
Cairo University

Dr. Attia Abd Allah EL-Gedawy

Chief Researcher of Bacteriology Animal Health Research Institute El-Dokki Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Name: Sayed Muhammed Sayed Hassan

Date of birth: 08 /08 /1988 **Nationality:** Egyptian **Degree:** PhD degree

Specialization : Microbiology (Bacteriology-Immunology-Mycology) **Title of thesis :** Bacteriological and molecular studies on *Mycobacterium*

species in cattle

Under Prof. Dr. Ahmed Samir Mohammed

supervision of: Professor of Microbiology-Faculty of Veterinary Medicine

Cairo University

Prof. Dr. Khaled Abd El-Aziz Abd El-MoeinProfessor of Zoonoses-Faulty of Veterinary Medicine

Cairo University

Dr. Attia Abd Allah El-Gedawy

Chief Researcher of Bacteriology-Animal Health Research

Institute - ElDokki

Abstract

In the present study tissue samples showing tuberculous lesions, collected from a total of 153 out of 200 slaughtered positive tuberculin reactors after PM examination, were subjected to bacteriological examination and out of them 83 animals (54.2%) were positive to bTB by microscopic examination of direct smears while by culture on L-J medium, M.bovis was isolated from 100 animals (65.4%). Spleen showed the highest positive results by culture technique at percentage of 68.4% followed by lymph node (66.1%), lung (65.1%) then liver (62.9%). Indirect ELISA, using cocktail antigens, on serum collected from the total 200 reactors detected 28% positive bTB cases. The antibiotic susceptibility testing of 65 isolates, confirmed by conventional PCR targeting Mpb70 as M.bovis, revealed resistance to at least one tested drug in 25 (38.5%) isolates of them 14 isolates were MDR. The overall resistance to tested drugs was 3.1%, 20%, 30.8% and 32.2% for EMB, STR, INH and RIF respectively. For exploring mutations associated with RIF resistance, DNA sequencing was performed on 6 *M.bovis* isolates and 3 mutations designated as H526Y (4/6), S531L (1/6) and D516V (1/6) were identified. The sequences were submitted to the NCBI GenBank with the accession numbers (OM448574, OM448575, OM448576, OM448577, OM448578 and OM448579). The obtained results emphasise the health hazard of M.bovis and augment the need for further investigation on antemortem identification of *M.bovis* infection in cattle to minimize public risk.

Keywords: *M.bovis*, bovine tuberculosis, ELISA, multidrug-resistant tuberculosis, sequencing, anti-tuberculous drugs, mycobacterial culture.

Dedicated with gratitude to

My mother

My father

My wife

My daughters (Laila & Assia)

My brother and sister

ACKNOWLEDGEMENT

First of all, my deepest prayerful thanks to **ALLAH** for everything I have in all my life and for giving me help, patience and ability to accomplish this work.

It is really difficult to find suitable words to express my sincere gratitude and appreciation to **Prof. Dr. Ahmed Samir**, Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University, for his generously supervising, guiding, valuable assistance, helpful criticism, precious advice, editorial comments, continuous help and encouragement all over this work.

My profound gratitude and appreciation are devoted to **Prof. Dr. Khaled Abd El-Aziz**, Professor of Zoonosis, Faculty of Veterinary Medicine, Cairo University for his distinct kindness in giving me a lot of help, offering his experience, valuable advice and time from many preoccupations.

No words can adequately express my sincere gratitude and deepest appreciations to **Prof. Dr. Attia Abd Allah El-Gedawy**, Chief Researcher of Bacteriology, Animal Health Research Institute, Dokki, Giza for his keen supervision, continuous support, critical comments, sincere advice, unlimited facilitations, valuable suggestions, continuous encouragement, remarks and advices during the course of this investigation.

My profound gratitude and appreciation are devoted to **Prof. Dr.**Khaled Farouk AL-Amry, Professor of Microbiology, Faculty of Veterinary Medicine, Cairo University for his distinct kindness in giving me a lot of help, offering his experience, valuable advice, suggestions and time from many preoccupations.

Contents

Title	Page
INTRODUCTION	1
Review of literature	6
1. History and classification	6
2.Prevalence of tuberculosis in bovine	8
3.Diagnosis of bovine tuberculosis	12
3.1. Tuberculin skin test for field diagnosis of bovine tuberculosis	12
3.2.Laboratory diagnosis	14
3.2.1.Diagnosis of bovine tuberculosis by conventional	
methods	14
3.2.2.Serological diagnosis of bovine tuberculosis by	4=
ELISA	17
3.2.3. Diagnosis of bovine tuberculosis by advanced techniques	23 23
3.2.3.1. Molecular techniques.	_
3.2.3.2. DNA sequencing	30
4. Anti-tuberculous drug susceptibility	34
Punlished Paper(s)	40
DISCUSSION	57
CONCLUSION	65
SUMMARY	66
REFERENCES	68
Appendix	93
ARABIC SUMMARY	99

LIST OF TABLES

Table NO.	Title	Page
1	Results of bacteriological examination of processed tissue samples	44
2	Result of sensitivity of M.bovis isolates against antituberculous drugs	45
3	Amino acid changes in resistant isolates	45
4	Type of tissue samples collected from tuberculin positive reactors for bacteriological examination	96
5	Results of bacteriological examination of collected samples from different organs showed tuberculous lesions	96
6	Serodiagnosis of bovine tuberculosis by ELISA using commercial kit	98

LIST OF FIGURES

Fig. No.	Title	Page
1	Results of bacteriological examination of processed tissue samples from different Governorates.	46
2	Sensitivity percentage of obtained isolates to different anti-TB drugs	46
3	Agarose gel electrophoresis for PCR amplified products of <i>M.bovis</i> isolates	47
4	Agarose gel electrophoresis for PCR amplified products of resistant <i>M.bovis</i> isolates.	48
5	Percentage of positive cases by bacteriological examination of samples from different organs	97
6	Percentage of positive bTB cases by culture and ELISA	98

List of ABBREVIATIONS

AFB	Acid Fast Bacilli
Ag85	Antigen 85
Am	Amikacin
BCG	Bacillus Calmette Guerine
bp	Base Pair
bTB	Bovine Tuberculosis
CDC	Centers for Disease Control and Prevention
CFP-10	Culture Filtrate Protein 10
CI	Confidence interval
CIDT	Comparative Intradermal Tuberculin Test
CITT	Comparative Intradermal Tuberculin Test
Cm	Capreomycin
CMI	Cell Mediated Immunity
CSF	Cerebrospinal Fluid
DNA	Deoxy ribonucleic acid
DST	Drug Susceptibility Test
ELISA	Enzyme Linked Immunosorbent Assay
EMB	Ethambutol
ESAT-6	Early Secretory Antigenic Target 6
FAO	Food And Agriculture Organization
GOVs	General Organization of Veterinary Services
ICGA	Immunochromatographic Assay
IELISA	Indirect Enzyme Linked Immunosorbent Assay
IFN-γ	Interferon Gamma
IgG	Immunoglobulin G
IGRA	Interferon Gamma Release Assay
INH	Isoniazid
kDa	Kilo Dalton
Km	Kanamycin
LAMP	Loop-mediated isothermal amplification
L-J	Lowenstein-Jensen medium
L.N	Lymph Node
LPA	Line Probe Assay
MDR	Multidrug Resistance
MIC	Minimal Inhibitory Concentration

MODS	Microscopic Observation Broth Drug Susceptibility
MOTT	Mycobacteria Other Than Tuberculosis
mPCR	Multiplex Polymerase Chain Reaction
MTBC	Mycobacterium Tuberculosis Complex
MTC	Mycobacterium Tuberculosis Complex
NAATs	Nucleic Acid Amplification Tests
NTM	Non-Tuberculous Mycobacteria
NVL	Non-Visible Lesions
OD	Optical Density
OIE	Office International Des Epizooties
PM	Postmortem
PPD	Purified Protein Derivative
PPD-A	Avian Purified Protein Derivative
PPD-B	Bovine Purified Protein Derivative
PPD-H	Human Purified Protein Dericative
PPD-M	Mammalian Purified Protein Derivative
PZA	Pyrazynamide
RD	Region of Difference
RFLP	Restriction Fragment Length Polymorphism
RIF	Rifampicin
rMPB	Recombinant Major Secreted Immunogenic Protein
RR	Rifampicin Resistance
SNPs	Single Nucleotide Polymorphisms
SICCT	Single Intradermal Comparative Cervical Tuberculin Test
SID	Single Intradermal Tuberculin
SIT	The Single Intradermal Tuberculin Test
ST-CF	Short Term Culture Filtrate Antigens
STR	Streptomycin
TLA	Thin Layer Agar
TST	Tuberculin Skin Test
VL	Visible Lesions
VNTR	Variable Number of Tandem Repeat
WGS	Whole Genome Sequencing
WHO	World Health Organization
XDR	Extensively Drug-Resistant

Chapter (1)

Introduction

INTRODUCTION

Bovine tuberculosis, a chronic debilitating highly contagious disease affecting cattle, buffaloes and various wild species (Hardstaff et al., 2013), is caused by *Mycobacterium bovis* which is one of *Mycobacterium tuberculosis* complex (MTC) (Romha et al., 2018). It is characterized by the development of tuberculous lesions which appear most frequently in lymph nodes, lung, liver, spleen, intestines, pleura and peritoneum (OIE, 2009).

The disease has severe economic impacts due to reduction of 10 - 20 % in milk production and weight in cattle, in addition to infertility and condemnation of meat. Without considering the death rate, there is about 10 - 25 % decrease in the efficiency of production in cattle (Lilenbaum et al., 1999; Yingyu et al.2009), as well as, the great costs of programs for eradication and serious consequences for animals movement and their products (Rodriguez-Campos et al., 2014). The annual global losses have been approximated to be 3 billion US dollars costing for 50 million infected cattle (Maggioli et al., 2015).

Bovine tuberculosis, as well as its economic impact, is a serious zoonotic problem where man can get infected either by direct exposure to diseased animals or by inhalation of infective droplets (**Perez-lago** *et al.*, **2013**), or by ingesting raw milk and meat from diseased animals and their products (**Malama** *et al.*, **2013**). In human, tuberculosis is supposed to be among the leading ten causes of death (**WHO 2017**), and in developing countries *M.bovis* is responsible for about 10-15% of human cases (**Algammal** *et al.*, **2019**).

In 2019, the global active TB cases in humans were estimated to be ten million incident cases, among them, 140,000 (range 69,800–235,000) were estimated to be new zoonotic TB cases (1.4%) of which approximately death was reported in 11,400 (8.1%, range 4470–21,600) (WHO 2020).

Detection of mycobacterial infections as early diagnosis as possible plays a vital role in control of TB and the application of accurate, reliable and cost effective diagnostic tools are essential for effective detection and subsequent eradication of bTB from cattle population (**Pucken** *et al.*, **2017**). Several techniques are used for early diagnosis of bTB infection in cattle which could be expressed in two broad categories namely direct and indirect tests.

The direct tests depend on the detection and identification of the organism in host animal, which primarily relates to the post mortem examination of animals (Sam et al., 2011), and associated tests to confirm the infection by demonstration of acid fast bacilli by microscopic examination of smears stained with Ziehl-Neelsen stain, the isolation of mycobacteria on selective culture medium and their subsequent identification by culture and biochemical methods (OIE, 2009). Although, the diagnosis based on isolation and identification of Mycobacterium is tedious and time consuming (Cedeno et al., 2005), it remains the golden standard for tuberculosis diagnosis where its specificity assumed to be very high but the sensitivity is relatively low due to insufficient materials submitted for culture and failure of culture to isolate the organism when it presents at low levels (Sam et al., 2011).