

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

FACULTY OF ENGINEERING

Public Works

Optimization of the Domestic Grey Water Treatment

A Thesis submitted in partial fulfillment of the requirements of the degree of Master of Science in Civil Engineering (Public Works)

by

Eng. Mohamed Khaled Hassane Khalil

Bachelor of Science in Civil Engineering
(Public Works)
Faculty of Engineering, The British University in Egypt, 2019.

Supervised By

Prof. Tarek Ismail Sabry

Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

Dr. Hossam Moustafa Hussein

Associate Professor of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University, Cairo, Egypt

Dr. Mohamed Hussein Hegazy

Assistant Professor of Sanitary Engineering Faculty of Engineering, The British University in Egypt

Cairo - (2022)

FACULTY OF ENGINEERING

Public Works

Optimization of the Domestic Grey Water Treatment

by

Mohamed Khaled Hassane Khalil

Bachelor of Science in Civil Engineering

(Public Works)

Examiners' Committee

Name and Affiliation	Signature
Prof. Dr. Hazem Ibrahim Saleh Prof. of Sanitary & Environmental Engineering Faculty of Engineering, Menoufia University	
Prof. Dr. Mohamed Sobhy Abd El Rahman Prof. of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University	
Prof. Dr. Tarek Ismail Mahmoud Sabry Prof. of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University	
Dr. Hossam Moustafa Hussein Assoc. Prof. of Sanitary & Environmental Engineering Faculty of Engineering, Ain Shams University	

Date: 06 August 2022

DEDICATION

This thesis is dedicated to those who contributed to educating, raising and supporting me to be able to accomplish it in this form

TO MY PARENTS,

BROTHER & SISTER

Also, I wish to dedicate my thesis to my Professors

PROF. DR. TAREK ISMAIL SABRY ASSOC. PROF. DR. HOSSAM MOUSTAFA DR. MOHAMED HUSSEIN HEGAZY

For the encouragement and support to complete this work.

STATEMENT

This thesis is submitted as a partial fulfillment of Master of Science in Civil Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

٨	Æω	١h٥	hame	Kha	led	Hassane	Kha	lil
T.	ΊU	1116	ımcu	IXIIA	ıcu	Hassand	Mua	ш

Signature

Date:08 April 2022

Researcher Data: -

Name : Mohamed Khaled Hassane

Khalil

Date of birth : 27-09-1996

Place of birth : Egypt

Last academic degree : Bachelor of Science

Field of specialization : Civil Engineering

University issued the degree : The British University in Egypt

Date of issued degree : 2019

Current job : Teaching Assistant

Acknowledgments

Firstly, thanks to the Almighty Allah, for blessing this work until it has reached its end and for His generous help throughout my life.

It is with immense gratitude that I acknowledge the support and help of Prof. Dr. TAREK ISMAIL SABRY, Professor of Sanitary and Environmental Engineering, Ain Shams University, for his help, and co-operation during the preparation of the study.

Also, great thanks to DR. HOSSAM MOUSTAFA, Associate Professor of Sanitary and Environmental Engineering, Ain Shams University, for his help, and cooperation during the preparation of the study.

Also, great thanks to DR. MOHAMED HUSSEIN HEGAZY, Assistant Professor of Sanitary and Environmental Engineering, Faculty of Engineering, British University in Egypt, for his help, and co-operation during the preparation of the study.

April 2022

Thesis Summary

The reuse of treated grey water is providing a good potential challenge as a secondary source of raw water. Many countries around the world are facing water sacristy and the treatment and reuse of the grey water collected from households reduces the dependency on natural diminishing water sources and also reduces the discharge of wastewater to sewers and treatment plants; as its treatment can be locally treated on-site.

In Egypt the gap between the available water supplies and the required demands is gradually increasing and it is, currently, estimated that the water demands are more than the available supplies. Wastewater used for domestic purposes represents (80-90) % of the total domestic supplies and if properly treated can be further utilized and reused and add up as a secondary water source. Many technologies are currently adopted for wastewater treatment and they are basically grouped under physical, biological or chemical treatment methods.

Experimental studies on three pilot treatment plants were conducted for a period of about five months. The experimental work was done in the sanitary engineering laboratories of the Faculty of Engineering, British University in Egypt. Grey water was collected from the University buildings and students hostels and the three treatment methods tested included; sand filtration, coagulation and activated sludge.

Results of the operation of the three pilot plants indicated that sand filtration at low flux rates gives treated grey water with acceptable effluent values. Both aluminium sulphate and ferric chloride gave good results at higher coagulant doses. The activated sludge process demonstrated excellent removal efficiencies at higher retention time. In general, the activated sludge process more efficient than the physio-chemical process followed by the physical process.

Key words:

Grey water, treatment systems, sand filtration, coagulation, activated sludge, total suspended solids, chemical oxygen demand.

Table of Contents

COVER	
APPROVAL COMMITTEE	ii
DEDICATION	iii
STATEMENT	iv
RESEARCHER DATA	v
AKNOWLEDGMENTS	
THESIS SUMMARY	
TABLE OF CONTENTS	
LIST OF FIGURES	
LIST OF TABLES	XX1
CHAPTER I: INTRODUCTION	
1-1 GENERAL	1
1-2 PROBLEM DEFINTION	1
1-3 OBJECTIVES OF CURRENT RESEARCH	2
1-4 SCOPE OF WORK	2
1-4-1 EXPERIMENTAL WORK	2
1-4-2 ANALYTICAL WORK	4
1-4-2-1 DATA COLLECTION	4
1-4-2-2 RESULTS ANALYSIS AND DISCUSSION	4
1-5 THESIS ORGANIZATION	4
CHAPTER II: LITERATURE REVIEW	
2-1 INTRODUCTION	6
2-2 GREY WATER FLOWRATES	6
2-3 GREY WATER CHARACTERISTICS	8
2-4 GREY WATER TREATMENT METHODS	12
2-4-1 BACKGROUND	
2-4-2 PHYSICAL TREATMENT METHODS	
2-4-3 BIOLOGICAL TREATMENT METHODS	
2-4-4 CHEMICAL TREATMENT METHODS	24

2-4-5 NATURAL TREATMENT METHODS	27
2-5 GREY WATER MANAGEMENT AND UTILIZATION	30
CHAPTER III: MATERIALS & METHODS	
3-1 GENERAL	31
3-2 FILTRATION PILOT PLANT CE 579	31
3-2-1 PILOT PLANT DESCRIPTION	
3-2-1-1 PILOT PLANT UNITS DESCRIPTION	
3-2-1-2 SCHEMATIC PROCESS OPERATION MODE	
3-2-1-3 CE 579 PILOT PLANT TECHNICAL DATA	39
3-3 PYSIO-CHEMICAL PILOT PLANT CE 586	39
3-3-1 PILOT PLANT DESCRIPTION	39
3-3-1-1 PILOT PLANT UNITS DESCRIPTION	
3-3-1-2 SCHEMATIC PROCESS OPERATION MODE	45
3-3-1-3 CE 586 PILOT PLANT TECHNICAL DATA	48
3-4 ACTIVATED SLUDGE PILOT PLANT MP 43	49
3-4-1 PILOT PLANT DESCRIPTION	49
3-4-1-1 PILOT PLANT UNITS DESCRIPTION	49
3-4-1-2 SCHEMATIC PROCESS OPERATION MODE	52
3-4-1-3 MP 43 PILOT PLANT TECHNICAL DATA	54
3-5 COLLECTED GREY WATER	54
3-6 EXPERIMENTAL PROGRAM & RESEARCH WORK PLAN	55
3-6-1 PHYSICAL TREATMENT METHOD (SAND FILTRATION)	55
3-6-2 PHYSIO-CHEMICAL TRATMENT METHOD (COAGULATION /	
SEDIMENTAION)	56
3-6-3 BIOLOGICAL TREATMENT METHOD (ACTIVATED SLUDGE)	
3-7 SAMPLING LOCATION & FREQUENCY	58
3-7-1 CE 579 PILOT PLANT	58
3-7-2 CE 586 PILOT PLANT	58
3-7-2 MP 43 PILOT PLANT	59
3-8 PARAMETERS ANALYSIS	59

CHAPTER IV: RESULTS

4-1 INTRODUCTION	61
4-2 EXPERIMENTAL OPERATING PROCEDURE	61
4-2-1 PHYSICAL TREATMENT METHOD (SAND FILTRATION)	61
4-2-1-1 PILOT PLANT SETUP NO.1 (SAND DEPTH 40 CM WITH DIFFE	RENT
FLUX RATES)	
4-2-1-2 PILOT PLANT SETUP NO.2 (SAND DEPTH 60 CM WITH DIFFE	ERENT
FLUX RATES)	
4-2-1-3 PILOT PLANT SETUP NO.3 (SAND DEPTH 80 CM WITH DIFFE	ERENT
FLUX RATES)	62
4-2-1-4 PILOT PLANT SETUP NO.4 (CONTINUOUS RUN WITH	
BACKWASHING)	63
4-2-2 PHYSIO-CHEMICAL TRATMENT METHOD (COAGULATION /	
SEDIMENTAION)	
4-2-2-1 PILOT PLANT SETUP NO.1 (NO CHEMICALS ADDITION)	63
4-2-2-2 PILOT PLANT SETUP NO.2 (ALUMINIUM SULPHATE WITH	
DIFFERENT DOSES)	64
4-2-2-3 PILOT PLANT SETUP NO.3 (FERRIC CHLORIDE WITH DIFFER	
DOSES)	
4-2-2-4 PILOT PLANT SETUP NO.4 (FERRIC CHLORIDE DOSE 300 MG	
WITH DIFFERENT FLOW RATES)	65
4-2-3 BIOLOGICAL TREATMENT METHOD (ACTIVATED SLUDGE)	65
4-2-3-1 PILOT PLANT SETUP NO.1 (STARTUP WITH RETENTION TIME	E 8
HRS)	65
4-2-3-2 PILOT PLANT SETUP NO.2 (STEADY STATE RETENTION TIME	/
4-2-3-3 PILOT PLANT SETUP NO.3 (STEADY STATE RETENTION TIME	/
4-2-3-4 PILOT PLANT SETUP NO.4 (STEADY STATE RETENTION TIME	4 HRS)
4-3 RESULTS	67
4-3-1 PHYSICAL TREATMENT METHOD (SAND FILTRATION)	67
4-3-1-1 RUN (1-1)	
4-3-1-2 RUN (1-2)	
4-3-1-3 RUN (1-3)	
4-3-1-4 RUN (1-4)	
4-3-1-5 RUN (1-5)	
4-3-1-6 RUN (1-6)	
4-3-1-7 RUN (1-7)	
· · · · · · · · · · · · · · · · · · ·	, 0

4-3-1-8 RUN (1-8)	103
4-3-1-9 RUN (1-9)	108
4-3-1-10 RUN (1-10)	
4-3-2 PHYSIO-CHEMICAL TREATMENT METHOD (COAGULATION /	
SEDIMENTATION)	118
4-3-2-1 RUN (2-1)	118
4-3-2-2 RUN (2-2)	
4-3-2-3 RUN (2-3)	
4-3-2-4 RUN (2-4)	
4-3-2-5 RUN (2-5)	134
4-3-2-6 RUN (2-6)	
4-3-2-7 RUN (2-7)	
4-3-2-8 RUN (2-8)	146
4-3-2-9 RUN (2-9)	
4-3-2-10 RUN (2-10)	154
4-3-2-11 RUN (2-11)	158
4-3-2-12 RUN (2-12)	162
4-3-2-13 RUN (2-13)	166
4-3-2-14 RUN (2-14)	170
4-3-3 BIOLOGICAL TREATMENT METHOD (ACTIVATED SLUDGE)	174
4-3-3-1 STARTUP RUN (3-STARTUP)	174
4-3-3-2 RUN (3-1)	178
4-3-3-3 RUN (3-2)	182
4-3-3-4 RUN (3-3)	186
CHAPTER V: DISSCUSION	
5-1 INTRODUCTION	191
5-2 PHYSICAL TREATMENT METHOD (SAND FILTRATION)	191
5-2-1 EFFECT OF THE FLUX RATES ON THE REMOVAL EFFICIENCY	191
5-2-2 EFFECT OF THE MEDIA DEPTH ON THE REMOVAL EFFICIENCY	
5-2-3 EXTENDED FILTER OPERATION WITH BACKWASHING	196
5-2-4 SUMMARY OF THE AVERAGE EFFLUENT VALUES FOR THE SAND	
FILTRATION PILOT PLANT	199
5 2 DUVOLO CHEMICAL TREATMENT METHOD (COACULATION)	
5-3 PHYSIO-CHEMICAL TREATMENT METHOD (COAGULATION / SEDIMENTATION)	200
*	200
5-3-1 EFFECT OF ALUMINIUM SULPHATE DOSE ON THE REMOVAL	
EFFICIENCY	200

5-3-2 EFFECT OF FERRIC CHLORIDE DOSE ON THE REMOVAL EFFICI	ENCY
	202
5-3-3 COMPARING THE REMOVAL EFFICIENCY BETWEEN BOTH	
COAGULANTS	204
5-3-4 COMPARING THE REMOVAL EFFICIENCY BY USING OPTIMUM	FERRIC
CHLORIDE DOSE WITH DIFFERENT FLOW RATES	206
5-3-5 SUMMARY OF THE AVERAGE EFFLUENT VALUES FOR THE	
COAGULATION/SEDIMENTATION PILOT PLANT	207
5-4 BIOLOGICAL TREATMENT METHOD (ACTIVATED SLUDGE)	208
5-4-1 STARTUP OPERATIONS	208
5-4-2 EFFECT OF RETENTION TIME ON THE REMOVAL EFFICIENCY	210
5-4-3 SUMMARY OF THE AVERAGE EFFLUENT VALUES FOR THE	
ACTIVATED SLUDGE PILOT PLANT	212
5-5 COMPARISON BETWEEN THE THREE TREATMENT METHODS	213
CHAPTER VI: CONCLUSION	
6-1 CONCLUSION	215
6-1-1 PHYSICAL TREATMENT METHOD (SAND FILTRATION)	215
6-1-2 PHYSIO-CHEMICAL TREATMENT METHOD (COAGULATION /	
SEDIMENTATION)	216
6-1-3 BIOLOGICAL TREATMENT METHOD (ACTIVATED SLUDGE)	
6-1-4 ALL TREATMENT METHODS	
6-2 RECOMMENDATIONS & FURTHER STUDIES	217
DEFEDENCES	210
REPORT OF THE PORT	, , , ,

List of Figures

CHAPTER II: LITERATURE REVIEW	
FIGURE (2/1) DISTRIBUTION OF GREY WATER AT DIFFERENT DFUS	7
FIGURE (2/2) PHOTOGRAPH OF THE LAB-SCALE COMPARTMENTS UNIT	13
FIGURE $(2/3)$ Schematic diagram for the grey water filtration unit.	14
FIGURE (2/4) SCHEMATIC SKETCH OF LABORATORY SCALE UNIT	15
FIGURE (2/5) SCHEMATIC FLOW OF THE PILOT SCALE SETUP	16
FIGURE $(2/6)$ Schematic non-woven textile filter setup and the two	
CONFIGURATIONS	. 17
FIGURE $(2/7)$ Schematic diagram of the Grey water tretment unit	17
FIGURE (2/8) GREY WATER TREATMENT PILOT PLANT	18
FIGURE (2/9) SCHEMATIC DIAGRAM OF THE EXPERIMENTAL SETUP	19
FIGURE $(2/10)$ (A) Photograph of the experimental setup and	
(B) FILTER MEDIA FIXED TO THE BASE PLATE	20
FIGURE (2/11) SCHEMATIC DIAGRAM OF SBR PILOT TREATMENT SYSTEM	22
FIGURE $(2/12)$ Schematic diagram of the TF pilot treatment system	23
FIGURE (2/13) SCHEMATIC DIAGRAM OF THE SBR-ULTRAFILTRATION PILOT	
TREATMENT SYSTEM	23
FIGURE (2/14) UP-FLOW SEPTIC TANK FOLLOWED BY ANAEROBIC BAFFLED	
REACTOR (USBR) SECTION	24
FIGURE (2/15) SCHEMATIC DIAGRAM OF THE TWO TREATMENT OPTIONS	
(A) USING SAND FILTRATION ONLY (B) USING FLOCCULATION	
FLOWED BY SEDIMENTATION & FILTRATION	. 25
FIGURE (2/16) CONSTRUCTED WETLANDS EXPERIMENTAL STUDY	. 29
CHAPTER III: MATERIALS & METHODS	
FIGURE (3/1) CE 579 OVERALL GENERAL VIEW	32
FIGURE (3/2) CE 579 GENERAL PHOTOGRAPH.	
FIGURE (3/3) PILOT PLANT CE 579 TRAINER UNIT	
FIGURE (3/4) PILOT PLANT CE 579 SAND FILTER	
FIGURE (3/5) SCHEMATIC DIAGRAM FOR THE FILTRATION FLOW PATH	
EICHDE (3/6) SOETWARE SCREEN SHOT FOR REQUIRED VELOCITY	38

FIGURE (3/7) BACKWASH OPERATION MODE FLOW PATH	38
FIGURE (3/8) CE 586 PILOT PLANT SUPPLY & TRAINER UNITS	40
FIGURE (3/9) CE 586 GENERAL PHOTOGRAPH	40
FIGURE (3/10) SUPPLY UNIT OVERALL VIEW AND DETAILS	41
FIGURE (3/11) CE 586 PILOT PLANT PRIMARY COMPONENTS	42
FIGURE (3/12) PRECIPITATION AND FLOCCULATION TANK	43
FIGURE (3/13) LAYOUT AND FUNCTION OF LAMELLA	44
FIGURE (3/14) SWITCH CABINET FRONT VIEW AND KNOB FUNCTIONS	44
FIGURE (3/15) CE 586 PILOT PLANT SCHEMATIC DIAGRAM	45
FIGURE $(3/16)$ Sample pictures of the pilot plant operation	47
FIGURE (3/17) MP 43 PILOT PLANT, A) GENERAL VIEW, B) CONTROL PANEL	50
FIGURE (3/18) PHOTOGRAPH OF THE PILOT PLANT MP 43	51
FIGURE (3/19) SCHEMATIC DIAGRAM OF THE PILOT PLANT MP 43	53
FIGURE (3/20) PHOTOGRAPHS OF SOME COLLECTED SAMPLES	59
CYLL DEED W. DEGYL TO	
CHAPTER IV: RESULTS	
FIGURE $(4/1)$ TSS RESULTS FOR RUN $(1-1)$.	
Figure (4/2) Removal of TSS & filter passage for run (1-1)	
FIGURE $(4/3)$ COD TOTAL RESULTS FOR RUN $(1-1)$	
FIGURE (4/4) REMOVAL OF COD TOTAL & FILTER PASSAGE FOR RUN (1-1)	
FIGURE $(4/5)$ COD SOLUBLE RESULTS FOR RUN $(1-1)$.71
Figure (4/6) Removal of cod soluble & filter passage for run (1-1) .	
FIGURE $(4/7)$ Flux rate results for run $(1-1)$	
FIGURE (4/8) FILTER PASSAGE EFFICIENCY FOR RUN (1-1)	
FIGURE (4/9) TSS RESULTS FOR RUN (1-2).	
FIGURE (4/10) REMOVAL OF TSS & FILTER PASSAGE FOR RUN (1-2)	74
FIGURE $(4/11)$ COD TOTAL RESULTS FOR RUN $(1-2)$	
FIGURE (4/12) REMOVAL OF COD TOTAL & FILTER PASSAGE FOR RUN (1-2)	
FIGURE $(4/13)$ COD SOLUBLE RESULTS FOR RUN $(1-2)$	76
FIGURE (4/14) REMOVAL OF COD SOLUBLE & FILTER PASSAGE FOR RUN (1-2)	76
FIGURE $(4/15)$ FLUX RATE RESULTS FOR RUN $(1-2)$	
FIGURE (4/16) FILTER PASSAGE EFFICIENCY FOR RUN (1-2)	77
FIGURE $(4/17)$ TSS RESULTS FOR RUN $(1-3)$	79
FIGURE (4/18) REMOVAL OF TSS & FILTER PASSAGE FOR RUN (1-3)	79