

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

Value of C-reactive Protein Level to Distinguish between Ischemic and Hemorrhagic Stroke

Thesis

For Partial Fulfillment of Master Degree in **Intensive Care**

By

Mahmoud Abdel-Hamid Muhammed

M.B.B.Ch, Ain Shams University

Under supervision of

Prof. Dr. Ahmed Nagah El-shaer

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Ass. Prof. Dr. Dalia Ahmed Ibrahim

Assistant Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Mohamed Abdelmoneim Fouly

Lecturer of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2022

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Ahmed Magah El-shaer**, Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Ass. Prof. Dr. Dalia Ahmed Ibrahim, Assistant Professor of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine - Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mohamed**Abdelmoneim Fouly, Lecturer of Anesthesiology,
Intensive Care and Pain Management, Faculty of
Medicine - Ain Shams University, for his great help,
active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Mahmoud Abdel-hamid muhammed

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1
Aim of the Work	3
Reivew of Literature	
Ischemic Stroke	4
Hemorrhagic Stroke	20
C Reactive Protein (CRP)	40
Patients and Methods	57
Results	65
Discussion	78
Summary	82
Conclusion	83
Recommendations	84
Limitations	85
References	86
Arabic Summary	

List of Tables

Table No	o. Title	Page No.
Table (1):	Face Arm Speech Test and the shortened Institutes of Health Stroke Scale	
Table (2):	Symptoms of Ischemic Stroke According to Circulation	
Table (3):	Recommended Tests in Evaluation of Acute I Stroke	
Table (4):	Inclusion and Exclusion Criteria for Intraveno	ous tPA 13
Table (5):	NIHSS score	59
Table (6):	Comparison between the studied groups accordistory	
Table (7):	Comparison between the studied groups accordinations	_
Table (8):	Comparison between the studied groups accordab investigation	•
Table (9):	Comparison between the studied groups according CRP	
Table (10):	Comparison between the studied groups accordifferent parameters	
Table (11):	Comparison between the studied groups acco	_
Table (12):	Comparison between the studied groups accordinations	
Table (13):	Comparison between the studied groups accordifferent parameters	_

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Pathology in Ischemic cerebral stroke	5
Figure (2):	CT scan showing early stage ischemic stroke.	10
Figure (3):	CT scan showing hemorrhagic stroke	22
Figure (4):	Mechanism of Hemorrhagic stroke	25
Figure (5):	CT without contrast study, axial cuts slintracranial hemorrhage	•
Figure (6):	Comparison between the studied groups acc to history	•
Figure (7):	Comparison between the studied groups acc to cardiac examination	•
Figure (8):	Comparison between the studied groups (to mean CRP during HS) according to sex	
Figure (9):	Comparison between the studied groups (to mean CRP during HS) according to history	

List of Abbreviations

Abb.	Full term
ACA	Anterior cerebral artery
	Anterior communicating artery
	Antinuclear antibodies
	Activated partial thromboplastin time
	American stroke association
ATACH	Acute Cerebral Hemorrhage
	Arteriovenous malformation
BBB	Blood-brain barrier
<i>BP</i>	Blood pressure
<i>CAA</i>	Cerebral amyloid angiopathy
CMBs	Cerebral microbleeds
<i>CPP</i>	Cerebral perfusion pressure
<i>CRP</i>	C-reactive protein
<i>CRT</i>	Cognitive rehabilitation therapy
CSF	Cerebrospinal fluid
CT	Computerized tomography
CTA	CT angiogram
CVD	Cardiovascular diseases
DSA	Digital subtraction angiography
DVST/CVT	Dural venous sinus (or cerebral vein) thrombosis
<i>ED</i>	Emergency department
ENLS	Emergency neurological life support
<i>ESR</i>	Erythrocyte sedimentation rate
<i>FAST</i>	Acute Hemorrhagic Stroke Treatment
<i>FFP</i>	Fresh frozen plasma
GCS	Glasgow coma scale
<i>GRE</i>	Gradient echo

List of Abbreviations (Cont...)

Abb.	Full term
HRT	Hormone replacement therapy
	Hounsfield units
<i>IA</i>	Intra-arterial
<i>IBD</i>	Inflammatory bowel diseases
<i>ICH</i>	Intracranial hemorrhage
	Intracranial Pressure
IgG	$Immunoglobulin\ G$
IL -1 β	Interleukin-1 eta
<i>IL-6</i>	Interleukin-6
<i>IL-8</i>	Interleukin-8
INTERACT	Intensive Blood Pressure Reduction in Acute
	Cerebral Hemorrhage Trial
<i>IVH</i>	IntraVentricularr Hemorrhage
<i>MAC</i>	$Membrane\ attack\ complex$
MCA	Middle cerebral artery
MDCTA	Multidetector CT angiography
MISTIE	Intracerebral Hemorrhage Evacuation
MRI	Magnetic resonance imaging
nCRP	Native CRP
<i>NO</i>	Nitric Oxide
NPM-SAH	Non-perimesencephalic SAH
oxLDLs O	xidized low-density lipoproteins
<i>PCA</i>	Posterior cerebral artery
<i>PCAs</i>	Posterior cerebral arteries
<i>PCh</i>	Phosphocholine
PCoA	Posterior communicating artery
<i>PEG</i>	Percutaneous endoscopic gastrostomy
<i>PICA</i>	Posterior inferior cerebellar artery
<i>PT</i>	$Prothrombin\ time$

List of Abbreviations (Cont...)

Abb.	Full term
<i>RCVS</i>	Reversible cerebral vasoconstrictive syndrome
<i>rFVIIa</i>	Recombinant activated factor VII
rt-PA	Recombinant tissue plasminogen activator
<i>SAH</i>	Subarachnoid hemorrhage
<i>SBP</i>	Systolic blood pressure
<i>SLE</i>	Systemic lupus erythematosus
STICH	Surgical Trial in Intracerebral Haemorrhage
<i>TNF-α</i>	Tumor necrosis alpha
<i>WBC</i>	White blood cell

Introduction

Stroke is considered as a life threatening condition in neurological patients. It is one of the leading causes of morbidity and mortality worldwide, as cerebrovascular accidents rank first in the frequency and importance among all neurological disease (*Roudbary et al.*, 2011).

Spontaneous ICH accounts for approximately 20% of all strokes, and it is characterized by high rates of mortality and residual disability among survivors (*Lattanzi et al.*, 2017).

Low- grade inflammation is increasingly recognized as a key player in the pathophysiology underpinning many different medical conditions. Serum biomarkers related to increases in systemic inflammatory activity are significant predictors of cardiovascular diseases (CVD) and mortality (*Guarner et al.*, 2015).

C-reactive protein (CRP) is a glycoprotein produced by the liver, which is normally absent from the blood in the presence of acute inflammation causing tissue destruction within the body stimulates CRP production, it typically rises within 6 hours of the start of inflammation, allowing the inflammation to be confirmed (*Ridker et al.*, 2008).

Notably, over recent decades CRP has been the focus of an intense investigation to explore its role in the setting of intracerebral

hemorrhage (ICH) and currently is proposed as a risk assessment tool and prognostic marker (Di Napoli et al., 2018).

The serum CRP concentration has close associations with the risk of coronary heart disease, ischemic stroke, and vascular mortality (Kaptoge et al., 2010).

Several studies have assessed the value of CRP in the very early phases of stroke as a prognostic factor of functional outcome. Many of these studies evaluated only the relation between CRP and mortality instead of functional outcome. The findings were inconclusive, some found a positive association but others were found negative correlation (Topakian et al., 2008).

There is no evidence providing a clear relationship with the risk of ICH. In the last decade, a number of epidemiological studies across multiple ethnicities have been conducted, but none demonstrated a meaningful link between circulating CRP levels and ICH risk (Di Napoli et al., 2018).

Verification of the role of CRP as an early prognostic factor of functional outcome after ischemic stroke may be of clinical importance, because it is an easily measured and readily available inflammatory marker.

AIM OF THE WORK

o detect the value of serum CRP level in differentiation between ischemic and hemorrhagic stroke.

Chapter 1

ISCHEMIC STROKE

States. Of the approximately 700,000 strokes occurring each year, about 550,000 are first strokes. About 400,000 strokes are ischemic. Stroke is the leading cause of adult disability with more than 4 million stroke survivors in the United States alone. Approximately 90% of stroke survivors are left with some residual deficit (*Alkhouli et al.*, 2019).

Pathophysiology

Stroke is defined as an "acute neurologic dysfunction of vascular origin with sudden (within seconds) or at least rapid (within hours) occurrence of symptoms and signs corresponding to the involvement of focal areas in the brain" (*Feigin et al.*, 2018).

The two main types of stroke are ischemic and hemorrhagic, accounting for approximately 85% and 15%, respectively. When an ischemic stroke occurs, the blood supply to the brain is interrupted, and brain cells are deprived of the glucose and oxygen they need to function (*Hickey*, 2003).

Ischemic stroke is a complex entity with multiple etiologies and variable clinical manifestations. Approximately 45% of ischemic strokes are caused by small or large artery

thrombus, 20% are embolic in origin, and others have an unknown cause (*Kurisu et al.*, 2018).

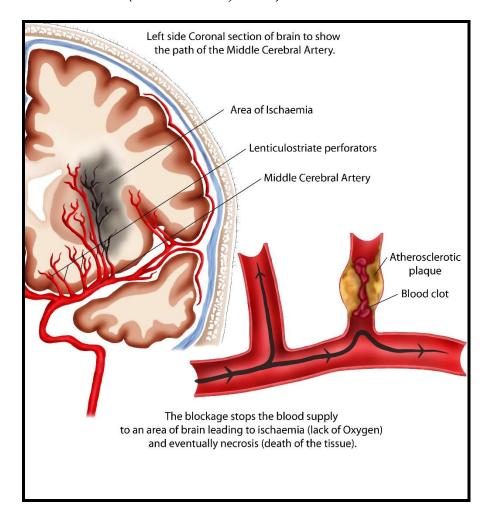


Figure (1): Pathology in Ischemic cerebral stroke (*Bailey et al.*, 2012)

Thrombosis can form in the extracranial and intracranial arteries when the intima is roughened and plaque forms along the injured vessel. The endothelial injury (roughing) permits platelets to adhere and aggregate, then coagulation is activated and thrombus develops at site of plaque. Blood flow through the