

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

FIBRO-SCAN BASED SCORE AND NOVEL NONINVASIVE SERUM MARKER, FGF-21, TO ASSESS LIVER FIBROSIS IN MORBIDLY OBESE PATIENTS

Thesis

Submitted for partial fulfillment of Master's degree In gastroenterology and Internal medicine

Presented by

Mustfa Azab El-Disawe M.B.BCH

Supervised by

Prof. Dr. Esem Biomy

Professor of gastroenterology and Internal medicine Faculty of Medicine, Ain Shams University

Dr. Mohamed Magdy

Assistant Professor of gastroenterology and Internal medicine Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2022

النتيجة المعتمدة على المسح الليفي مع استخدام (FGF-21) كأحدث تحليل لتقييم التليف الكبدي في مرضى السمنة المفرطة المصابين بمرض الكبد الدهني

رسالة

توطئة للحصول علي درجة الماجستير في أمراض الجهاز المهار المنطقة المنطق

مقدمة من

الطبيب/ مصطفى عزب الديساوي

بكالوريوس الطب و الجراحة- جامعة

تحت إشراف

أد/ عصام بيومي

أستاذ الباطنة العامة والجهاز الهضمي والكبد كلية الطب- جامعة عين شمس

د/ محمد مجدي سلامة

أستاذ مساعد الباطنة العامة والجهاز الهضمي والكبد كلية الطب- جامعة عين شمس كلية الطب كلية الطب جامعة عين شمس جامعة عين شمس

Acknowledgement

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. ESem biomy**, Professor of gastroenterology and Internal medicine, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to **Dr Mohamed Magdy**, Assistant Professor of gastroenterology and Internal medicine, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues, , for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

CONTENTS

Tit	tle		Page
•	List of Abbre	viations	v
•	List of Table.	•••••	VII
•	List of Figure	S	IX
•	Introduction	•••••	1
•	Aim of the wo	ork	4
•	Review of lite	erature	
	Chapter (1): 1	Non-Alcoholic Fatty Liver Diseas	se5
	Chapter (2): (Obesity	55
	Chapter (3):	Fibroblast growth factor 21	82
	Chapter (4):	Fibro-scan Based Score and novel non-invasive serum marker, FGF-21, to assess Liver Fibrosis in Morbidly Obese Patients	102
•	Subjects And	Methods	117
•	Results	••••••	125
•	Discussion	••••••	143
•	Conclusion	••••••	155
•	Recommenda	ations	156
•	Summary	••••••	157
•	References	••••••	162
•	الملخص العربي	••••••	180

LIST OF ABBREVIATIONS

Abb.	Full term
ALT	Alanine aminotransferase
APRI	AST-to-Platelet Ratio Index
AST	Aspartate aminotransferase
AUC	Area under the curve
cAMP	Cyclic adenosine monophosphate
CK-18	Cytokeratin 18
ECM	Extra ceullular matrix
ELF	Enhanced liver fibrosis
FGFRs	Fibroblast growth factor receptors
GGT	Gamma-glutamyl transferase
HA	Hyaluronic acid
HCC	Hepatocellular carcinoma
HCV	Hepatitis C virus
HDL	High density lipoproteins
HSCs	Hepatic stellate cells
IASL	International Association of the Study of the Liver
IL	Interleukin
IQR	Interquartile range
LDL	Low density lipoproteins
LFTs	Liver function tests
MASH	Metabolic associated steatohepatitis
MMPs	Matrix metalloproteinase
MRE	Magnetic resonance elastography
MRE	Magnetic resonance elastography
MS	Metabolic syndrome
NAFLD	Nonalcoholic fatty liver disease
NASH	Nonalcoholic steatohepatitis
OELF	Original ELF
PBC	Primary biliary cirrhosis
PCOS PKA	Polycystic ovarian Syndrome
	Protein kinase A
ROC	Receiving operating characteristic
TE	Transient elastography

∠List of Abbreviations

Abb.	Full term
TIMP	Tissue inhibitor of metalloproteinase
VLDL	Very-low-density lipoprotein

LIST OF TABLE

Table No	Subjects Page					
Table (1):	Non-alcoholic fatty liver disease activity					
	scoring system30					
Table (2):	Steatosis, activity, and fibrosis scoring					
	system31					
Table (3):	Brunt grading and staging of nonalcoholic					
	steatohepatitis32					
Table (4):	Histologic comparison of non-alcoholic fatty					
	liver disease/non-alcoholic steatohepatitis					
	and alcoholic liver disease					
Table (5):	Factors to be assessed in the evaluation of a					
	patient with suspected non-alcoholic fatty liver disease					
Table (6):	The International Classification of adult					
Table (0).	underweight, overweight and obesity					
	according to BMI56					
Table (7):	Adult Treatment Panel definition of the					
	metabolic syndrome77					
Table (8):	Serum level, absolute and normalize, of					
	FGF21 regarding the transgenic mice,					
	reported into the literature91					
Table (9):	Distribution of the studied cases according to					
	demographic data (n=50)					
Table (10):	Distribution of the studied cases according to					
m 11 (11)	examination (n =50)					
Table (11):	Distribution of the studied cases according to					
Toble (12).	Co-morbidity (n=50)					
1 abic (12).	lab investigation (n=50)					
Table (13):	Distribution of the studied cases according to					
14010 (10)1	fibrosis grade (n=50)					
Table (14):	Distribution of the studied cases according to					
. ,	non-invasive markers (n=50)132					
Table (15):	Relation between fibrosis grades with					
	demographicdata					

∠List of Table

Table No	Subjects	Page
Table (16):	Relation between fibrosis grades	
	withexamination	134
Table (17):	Relation between fibrosis grades with	
	labinvestigation	136
Table (18):	Relation between fibrosis grades with lab	
	investigation"continue	138
Table (19):	Relation between fibrosis grades with Non-	
	invasivemarkers	140
Table (20):	Correlation between Fibrosis grade and	
	different parameters (n= 50)	142

LIST OF FIGURES

Figure No	Subjects	Page
Figure (1):	Metabolic associated fatty liver disease and	
	the influence on liver transplantation.	
	MAFLD: Metabolic associated fatty liver	
	disease	53
Figure (2):	The World Health Organization worldwide	
	distribution of obesity	62
Figure (3):	Multivariate Relative Risk of Death from	
	Cardiovascular Disease, Cancer, and All	
	Other Causes among Men and Women Who	
	Had Never Smoked and Who Had No	
	History of Disease at Enrollment, According	
	to Body-Mass Index	81
Figure (4):	Signaling pathways that control FGF21	
	expression in skeletal muscle and FGF21-	
	mediated metabolic effect on different	
	tissues	95
Figure (5):	Distribution of the studied cases according to	
T	sex.	126
Figure (6):	Distribution of the studied cases according to	107
E: (5)	mean Weight (Kg).	127
Figure (7):	Distribution of the studied cases according to	120
F: (9).	Co-morbidity	128
Figure (8):	Distribution of the studied cases according to	120
Figure (0).	mean HBA1C	130
Figure (9):	Distribution of the studied cases according to fibrosis grade.	121
Figure (10).	Relation between fibrosis grades and sex	
_	Relation between fibrosis grades and mean	133
riguit (11).	Weight (Kg)	135
Figure (12).	Relation between fibrosis grades and mean	133
11guit (12).	Cholesterol	137
Figure (13)	Relation between fibrosis grades and mean	137
8 (10)•	GGT (U/I).	139

Ø	List	of	Figures

Figure No	Subjects				Page
Figure (14):	Relation between	fibrosis grades	and	mean	
	APRI				141

INTRODUCTION

Finding a means to noninvasive diagnosis of non-alcoholic fatty liver disease (NAFLD) and its entities has been the aim of many research efforts since recently, and seems to remain a very much needed goal among many clinicians and researchers in the field of hepatology. Why is it that way? NAFLD is today considered to be the most common liver disease in adults. The prevalence of NAFLD in general population is very high, in the range of 15%-30% according to various studies, and is even increasing, due to the rising prevalence of diabetes and obesity. (*Ratziu et al.*, 2009).

Spectrum of NAFLD includes two entities with very different natural course and prognosis: simple steatosis, which mostly has a benign non-progressive course and good prognosis, and non-alcoholic steatohepatitis (NASH), which demonstrates progression of fibrosis in about 30%-40% of patients and has a proven potential to eventually lead to cirrhosis an end-stage liver disease including hepatocellular carcinoma. (Ekstedt et al., 2006), (Matteoni et al., 1999), (Adams et al., 2005)

NASH seems to be present in a surprisingly high proportion of NAFLD patients, including 40% to 75% of cases with elevated aminotransferase levels, those data coming from recent studies using current histological definitions and including substantial number of patients

(Ekstedt et al., 2006), (Söderberg. et al., 2010), (Fracanzani etal., 2008)

In studies of liver biopsy findings from apparently healthy living liver donor candidates, the proportion of NASH among patients with newly discovered NAFLD was about 30%. (*Minervini et al.*, 2008)

Even in patients with normal aminotransferase levels, proportion of NASH among NAFLD cases seems to be almost the same, and the whole spectrum of NAFLD including advanced fibrosis and cirrhosis has been observed in patients with completely normal laboratory findings. (*Fracanzani et al.*, 2007), (*Mofrad et al.*, 2002), (*Sorrentino et al.*, 2005)

Liver biopsy is still considered the gold standard in diagnosis and the only reliable tool for distinguishing NASH from simple steatosis and for grading and staging the disease, providing important information about severity of steatosis, lobular inflammation, hepatocellular ballooning, and degree of fibrosis. (*Neuschwander-Tetri et al.*, 2019)

Minimal histological criteria for NASH include steatosis, hepatocyte injury (in the form of ballooning or apoptosis) and lobular inflammation. Similarly to other chronic liver diseases, fibrosis is usually divided histologically in four stages: perisinusoidal fibrosis (F1), perisinusoidal and periportal fibrosis (F2), bridging fibrosis

(F3) and cirrhosis (F4). Liver biopsy also has several negative aspects: it is invasive, unpleasant for patients, it usually includes hospitalization and a day or two lost at work, and the adequate interpretation of the specimen requires a pathologist with expertise in hepatopathology, which altogether makes it a costly and time-consuming procedure. Another significant drawback of liver biopsy, and in medical terms the most important one is its sampling variability, substantial which has been consistently proven for several chronic liver diseases including NAFLD. In a well-designed study by Ratziu et al. (*Ratziu et al.*, 2005)

•

AIM OF THE WORK

This prospective cohort study aims to develop and validate noninvasive scoring system for assessment liver fibrosis in morbidly obese patients with NAFLD.