

بسم الله الرحمن الرحيم

$\infty\infty\infty$

تم عمل المسح الضوئي لهذة الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

اتوتكنوبوج

ملاحظات:

- بالرسالة صفحات لم ترد بالأصل
 - بعض الصفحات الأصلية تالفة
- بالرسالة صفحات قد تكون مكررة بالرسالة صفحات قد تكون مكررة
 - بالرسالة صفحات قد يكون بها خطأ ترقيم

STUDIES OF THE CATALYTIC ACTIVITY OF SOME PORPHYRIN AND PHTHALOCYANINE COMPLEXES FOR ACTIVATING THE OXIDATION OF SOME PHENOL DERIVATIVES BY OXYGEN

A Thesis Submitted to the Faculty of Science Tanta University

BY SAHAR HASSONA HASSAN EL-KHALAFY (B. Sc. Chemistry)

In Partial Fulfilment for the Degree of Master of Science (Chemistry)

(1997)

To My Family

SUPERVISORS

Prof. Dr.: M. A. ABDO

Professor of Organic Chemistry, Faculty of Science, Tanta University.

Prof. Dr.: M. T. HASSANEIN

Professor of Organic Chemistry, Chemistry Department Faculty of Science, Tanta University.

Dr.: S. S. GERGIUS

Lecturer of Organic Chemistry, Chemistry Department Faculty of Science, Tanta University.

4

ACKNOWLEDGMENTS

I would like to record my sincere to Dr. M. A. Abdo, Professor of Organic Chemistry, Chemistry Department, Faculty of Science, Tanta University; who gave generously of this guidance, helpful suggestions, reviewing the manuscript and constant encouragement throughout the period in which this work was carried out.

I wish to record my deep gratefulness to Dr. M.T. Hassanein, Professor of Organic Chemistry, Chemistry Department, Faculty of Science, Tanta University; for suggesting the research project, continous guidance and invaluable advice throughout this work, and for discussing and reviewing the manuscript.

I'd like also to thank Dr. S. S. Gergius; Lecturer of Organic Chemistry, Chemistry Department, Faculty of Science, Tanta University; For his help and encouragement during the progress of this work.

My appreciation also extends to many of my colleagues at the Chemistry Department for their support and the nice atmosphere they created during the preparation of this work

Candidate
Sahar Hassone El-Khalafy

NOTE

Besides the work carried out in this thesis, the candidate had postgraduate for one year in physical and organic chemistry covering the followig topices:-

- (1) Functionalized polymers and their applications.
- (2) Physical polymer chemistry.
- (3) Reaction mechanism.
- (4) Electrochemistry.
- (5) Heterocyclic chemistry.
- (6) Biochemistry.
- (7) Dyes chemistry.
- (8) Organic spectroscopy.
- (9) Molecular spectroscopy.
- (10) Ion-exchange resins.
- (11) Group theory.
- (12) German language.

He had successfully passed a written examination in these courses.

(Prof. Dr. Safaa El-Din H. Etaiw)
Chairman of Chemistry Department
Faculty of Science
Tanta University

CURRICULUM VITA

Name : Sahar Hassona EL-Khalafy.

Data of birth : 25 th. August 1971.

Place of birth: EL-Mahalla EL-Kubra, Egypt.

Nationality : Egyptian.

Qualification: B. Sc. Degree with grade "very good"

Major Chemistry, 1992, Faculty of Science

Tanta University.

Experience : Demonstrator at Chemistry Department,

Faculty of Science, Tanta University (1992 to date).

CONTENES

1.	Introduction	Page
1.1	Oxygen carriers	2
1.1.1	Natural oxygen carriers	3
1.1.2	Synthetic oxygen carriers	4
1.1.2.1	Porphyrins	5
1.1.2.2	Phthalocyanines	8
1.1.2.3	Schiff bases	11
1.2	Autoxidation of phenols catalyzed by transition-metal	
	complexes	12
1.2.1	Autoxidation of dialkylphenols	12
1.2.1.1	Oxidation of phenols catalyzed by metalloporphyrins	14
1.2.1.2	Oxidation of phenols using metallophthalocyanines	16
1.2.1.3	Oxidation of phenols catalyzed by cobalt-Schiff base	
	complexes	17
1.3	Autoxidation of 2-aminophenol	28
1.4	Polymer-supported transition-metal catalysts	32
1.4.1	Polymer colloids as catalyst supports	32
2.	Experimental part	
2.1	Materials and reagents	47
2.2	Buffer solutions	47
2.3	Analysis	48
2.4	Preparation of 5.10.15.20-tetraarylporphyrins	48

2.5	Preparation of 5,10,15,20 - tetraphenylporphinato-	
	cobalt (II) complex	50
2.6	Preparation of 5,10,15,20 -tetrakis (p-trifluoromethyl-	
	phenyl)porphinatocobalt (II) complex	50
2.7	Preparation of 5,10,15,20-tetrakis (p-methylphenyl)-	
	porphinatocobalt (II) complex	51
2.8	Preparation of 5,10,15,20-tetrakis (p-methoxyphenyl)-	
	porphinatocobalt (II) complex	52
2.9	Preparation of tetra (p-sulphonatophenyl)porphyrin	52
2.9.1	Preparation of 5,10,15,20-tetrakis (p-sulphonatophenyl)-	
	porphinatocobalt (II) complex	53
2.10	Preparation of cobalt (II) complex of phthalocyanine-	
	tetrasodiumsulphonate	54
2.11	Polymerization	55
2.12	Oxidation reactions	56
2.12.1	Autoxidation of 2,6-di-tert-butylphenol catalyzed by	
	5,10,15,20-tetraarylporphinatocobalt (II) complexes	56
2.12.2	Autoxidation of 2,6-di-tert-butylphenol in aqueous	
	medium catalyzed by cobalt (II) complex of 5,10,15,20-	
	tetrakis (p-sulphophenyl)porphyrin bound to cationic	
	latex	57
2.12.3	Autoxidation of 2-aminophenol catalyzed by cobalt (II)	
	complex of phthalocyaninetetrasodium-sulphonate in	
	water	58

3.	Results and discussions	
3.1	Autoxidation of 2,6-di-tert-butylphenol catalyzed by	
	5,10,15,20-tetraarylporphinatocobalt (II) complexes	60
3.1.1	Results	60
3.1.1.1	Kinetics of autoxidation of 2,6-di-tert-butylphenol	65
3.1.1.1.1		65
3.1.1.1.2	Effect of concentration of 2,6-di-tert-butylphenol	67
3.1.1.1.3		
	autoxidation of 2,6-di-tert-butylphenol	69
3.1.1.1.4	Effect of temperature	71
3.1.2	Discussion	73
3.2	Autoxidation of 2,6-di-tert-butylphenol in aqueous	
	medium catalyzed by cobalt (II) complex of 5,10,15,20-	
	tetrakis (p-sulphophenyl)porphyrin bound to cationic	
	latex	77
3.2.1	Results	77
3.2.1.1	Preparation of polymeric colloidal support	77
3.2.1.2	Preparation of colloidal catalyst	78
3.2.1.3	Autoxidation of 2,6-di-tert-butylphenol	7 9
3.2.1.4	Kinetics of autoxidation of 2,6-di-tert-butylphenol	83
3.2.1.4.1	Effect of pH on the autoxidation of 2,6-di-tert-	_
	butylphenol	83
3.2.1.4.2	Effect of catalyst concentration	85

3.2.1.4.3	Effect of latex concentration	86
3.2.1.4.4	Effect of temperature on the autoxidation of 2,6-di-tert-	
	butylphenol	88
3.2.1.4.5	Effect of the concentration of 2,6-di-tert-butylphenol	90
3.2.1.4.6	Effect of partial pressure of dioxygen on the	
	autoxidation of 2,6-di-tert-butylphenol	91
3.2.1.4.7	Catalyst reuse	92
3.2.2	Discussion	93
3.3.	Autoxidation of 2-aminophenol catalyzed by cobalt (II)	
	complex of phthalocyaninetetrasodiumsulphonate in	
	water	97
3.3.1	Results	97
3.3.1.1	Kinetics of autoxidation of 2-aminophenol	101
3.3.1.1.1	Effect of pH on the autoxidation of 2-aminophenol	101
3.3.1.1.2	Effect of concentration of cobalt (II) complex of	
	phthalocyaninetetrasodiumsulphonate	103
3.3.1.1.3	Effect of the concentration of 2-aminophenol	104
3.3.1.1.4	Effect of partial pressure of dioxygen on the	
	autoxidation of 2-aminophenol	106
3.3.1.1.5	Effect of temperature on the autoxidation of 2-	
	aminophenol	107
3.3.2	Discussion	109
4.	Summary	111
5.	References	114
6.	Arabic summary	122

.

Aim Of The Work

AIM OF THE WORK

Catalysts are essential for most chemical transformation to take place in living cells as well as in industrial chemical processes. The use of model system to mimic the utilization of dioxygen in biological systems has been subject of numerous studies.

Transition-metal ligand complexes can activate and transfer dioxygen to organic compounds. Selective oxidation of organic molecules with dioxygen catalyzed by transition-metal complexes capable of binding dioxygen is of current interest from the standpoints of organic syntheses and biological oxidations.

Cobalt (II) complexes of porphyrin and phthalocyanine have been found to be effective catalysts for transfer of oxygen to different classes of organic compounds.

The objective of the present work is to study the activities of cobalt (II) complexes of some tetra (*p*-substitutedphenyl) porphyrins and tetrasodium phthalocyanatocobalt (II) tetrasulphonate for catalyzing the oxidation of some phenol derivatives, in organic solvent as well as in aqueous medium. And to investigate the activity of cationic polymer colloid as support for 5,10,15,20-tetrakis (*p*-sulfonatophenyl) porphinatocobalt (II) complex in the autoxidation of 2,6-di-tert-butylphenol in water.

Introduction