

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لا يوجد

AIN SHAMS UNIVERSITY

Since 1992

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

EMG Pattern Recognition Based Neural System of Lower Locomotive Modes Used For the Controlling of Lower Limb Prosthesis

A Thesis submitted in partial fulfillment of the requirements of the degree of

Doctor of Philosophy in Electrical Engineering (Electronics Engineering and Electrical Communications) Submitted by

TAREK MOHAMED BITTIBSSI

Master of Science in Electrical Engineering (Electronics Engineering and Electrical Communications)
Faculty of Engineering, ASU, 2014

Supervised By

Prof. Abdelhaliem Zekry

Department of Electronics and Electrical Comm. Engineering, Ain Shams University, Cairo, Egypt

Asst. Prof. Shady A. Maged

Department of Mechatronic Engineering, Ain Shams University, Cairo, Egypt

Dr. Mohamed Ahmed MohamedMilitary Medical Academy, Cairo, Egypt

Cairo - (2022)

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING Electronics and Communications

EMG Pattern Recognition Based Neural System of Lower Locomotive Modes Used for the Controlling of Lower Limb Prosthesis

Submitted by **TAREK MOHAMED BITTIBSSI**

Master of Science in Electrical Engineering
(Electronics Engineering and Electrical Communications)
Faculty of Engineering, ASU, 2014
Examiners' Committee

Name and Affiliation	Signature
Prof. Abdelhaliem Zekry	
Prof. Salah S. Elagooz	
Prof. Mohamed A. Abouelatta	

Date:1 July 2022

Statement

This thesis is submitted as a partial fulfillment of in Engineering, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Tarek Bittibssi
Signature

Date:1 July 2022

Researcher Data

Name : Tarek Mohamed I. Bittibssi

Date of birth : 13/2/1977

Place of birth : Qatar

Last academic degree : Master Degree

Field of specialization : Electrical Engineering

University issued the degree: Ain Shams University

Date of issued degree : 2014

Current job : Military Officer

Thesis Summary

Surface Electromyography (sEMG) signals have a lot of biomedical applications and modern human-machine interactions. sEMG signals received from muscles that require advanced methods for detection, pre-processing, and classification. Current research technologies are focused, principally on deep neural network architectures that collect spatial data from sEMG signals. Low-cost traditional prosthetic leg, available worldwide, can make walking and stair climbing possible but still difficult. This thesis presents the hardware implementation to the sEMG Powered Prosthesis Actuation (PPA) system using recurrent neural network (RNN) model based on three models long-term shortterm memory (LSTM), Convolution Peephole LSTM and gated recurrent unit (GRU), which are used to train sEMG benchmark databases, and find the correlation between the input (sEMG) and outputs (gesture). The following techniques were evaluated by calculating the success of a variety of variables like training time, accuracy loss and hyper-parameters which were applied on eight benchmark datasets, in order to demonstrate the validity of these models, with prediction accuracy at almost 99.6 %. The data were collected from benchmark datasets describing different subjects during performance, and analyzing various gait patterns were used to construct the neural network and to alleviate significant model errors in a real-time setting. Processing circuits, interfacing the output with

the controller board, signal amplification, motor driving circuit and single-board computer programming are included in the implementation.

Keywords — sEMG, Recurrent Neural Network, LTSM, Pattern Recognition, RNN, Long-Short Term Memory, Prosthesis leg.

Acknowledgment

A special thank you goes out to the Department of Electronics Engineering and Electrical Communications for their support in helping me to complete my PhD thesis. I'd like to express my gratitude to my supervisor Prof. Abdelhaliem Zekry, Shady Maged and Mohamed Genedy, not only for their essential advice, but also for putting up with the lengthy procedure of providing me with their sEMG data. Finally, I'd like to express my gratitude my colleague and friends, for devoting time and effort to developing a very useful interface for visualizing leg movement.

Table of Contents List of Figures.....XI List of TablesXIII List of Abbreviations XIV List of Symbols.....XVI 1.3 Aim4 1.4 Scope and limitations......4 Chapter 2: Background & Literature Review......6 2.1 Signals sources......6 2.1.1 Electromyography signals6 2.2 Machine learning9 2.3.3 The Batch Normalization Layer......16

2.4 Recurrent Neural Networks	19
2.4.1 Basic Long Short-Term Memory	21
2.4.2 Convolution LSTM with a Peephole Connection	26
2.4.3 Gated Recurrent Unit	27
2.5 Training process	28
2.6 Loss Function	29
2.7 Optimization Algorithm	30
2.8 Regularization Methods	32
2.9 Dropout	33
2.10 Data Augmentation	33
2.11 Early stopping	34
2.12 Measurements	34
Chapter 3: Datasets and Construction the Exoskeleton Leg	37
3.1 Dataset classification	37
3.1.1 Classify gestures by reading muscle activity Data Set:	37
3.1.2 Electro-Myography-EMG Data Set:	38
3.1.3 EMG dataset in Lower Limb Data Set:	38
3.1.4 Human Activity Recognition Using Smartphones Data So	et:
3.1.5 Ninapro Data Sets:	
3.1.6 Bilateral Lower-Limb Neuromechanical Signals Data Ser	t: 39
3.1.7 Lower limb bio-mechanics in multiple conditions Data S	
3.2 Data Processing	40

3.3 Software and Hardware	41
3.4 Experiments	41
3.5 Model Comparison	42
3.6 Hyper-parameter Search	45
3.7 CONSTRUCTION AND CONTROL OF THE EXOSKELETON LEG	46
3.7.1 Human Gait Modeling	46
3.7.2 Powered Prosthesis Actuation Design	48
3.7.3 Embedded Systems & Sensing	50
Chapter 4: Results & Discussion	51
Chapter 5: Conclusion & Suggestion Future work	59
5.1 CONCLUSION	59
5.2 Suggestion Future work	60

List of Figures Figure 2.1: Sample of row surface EMG signal7 Figure 2.2: Sample accelerometer signals extracted9 Figure 2.3: Contextualizing Deep Learning in Relation to AI and Figure 2.5: Multilayer perceptron architecture with Input layer, Output layer and two Hidden layers (five and four nodes respectively)14 Figure 2.6: Example of a fully connected layer......15 Figure 2.7: The most common non-linear activation functions [36]...17 Figure 2.8: A recurrent neural network in its most generic form. The arrows indicate recurrent connections, each of which produces a new layer with each time step20 Figure 2.10: Calculations of the input gate22 Figure 2.11: Forget Gate diagram24 Figure 2.12: Calculations on the Output Gate25 Figure 2.13: Convolution LSTM with a peephole connection26 Figure 2.14: GRU cell architecture......27 Figure 3.1: Data separation.......40 Figure 3.2: The topology of the LSTM and GRU neural networks42 Figure 3.3: The LSTM model in its most basic form. The original data is transformed into a tensor matrix, which is subsequently fed into the LSTM network. There is an output layer (classification) with a

Figure 3.4: Schematic of CNN and LSTM neural network model.	
Layers of convolution and max-pooling are used to process the dat	ta. In
the end, each class has its own softmax layer [44]	43
Figure 3.5: Human gait movement [45]	46
Figure 3.6: Knee gait movement [45]	47
Figure 3.7: Prosthesis knee	48
Figure 3.8: Transmission chain	49
Figure 3.9: Embedded Systems side	50
Figure 4.1: Loss factor among all three models for each dataset	51
Figure 4.2: flexion and extension movement	57

List of Tables	
Table 1.1: Confusion matrix for binary classification	35
Table 2.1: Model comparison using hyper-parameter values	44
Table 4.1: The Classification accuracy using RNN algorithm in different datasets	55
Table 4.2: The Classification accuracy using RNN algorithm in above & below Knee datasets	56

List of Abbreviations

ABS Acrylonitrile Butadiene Styrene

ADAM Adaptive Moment Estimation

ADALINE Adaptive Linear Element algorithm

AI Artificial Intelligence

APs Action Potentials

ANN Artificial Neural Network

BPTT Backpropagation through time

CNN Convolutional Neural Network

CPU Central Processing Unit

CSV Comma-separated values

DL Deep Learning

DoF degrees of freedom

DC Direct Control

EMG ElectroMyoGraphy

FN False negatives

FP False positives

GPIO General-Purpose Input/Output

GRU Gated Recurrent Unit

IMU Inertial measurement units

Kp,Ki,Kd Proportional, Integral, Derivative gain

K+ Sodium ion

k-NN k-th Nearest Neighbours