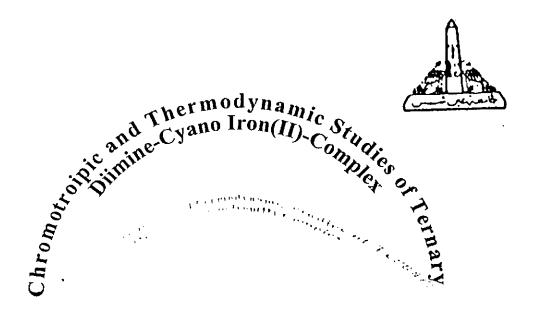


بسم الله الرحمن الرحيم

$\infty\infty\infty$


تم عمل المسح الضوئي لهذة الرسالة بواسطة / سامية زكى يوسف

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

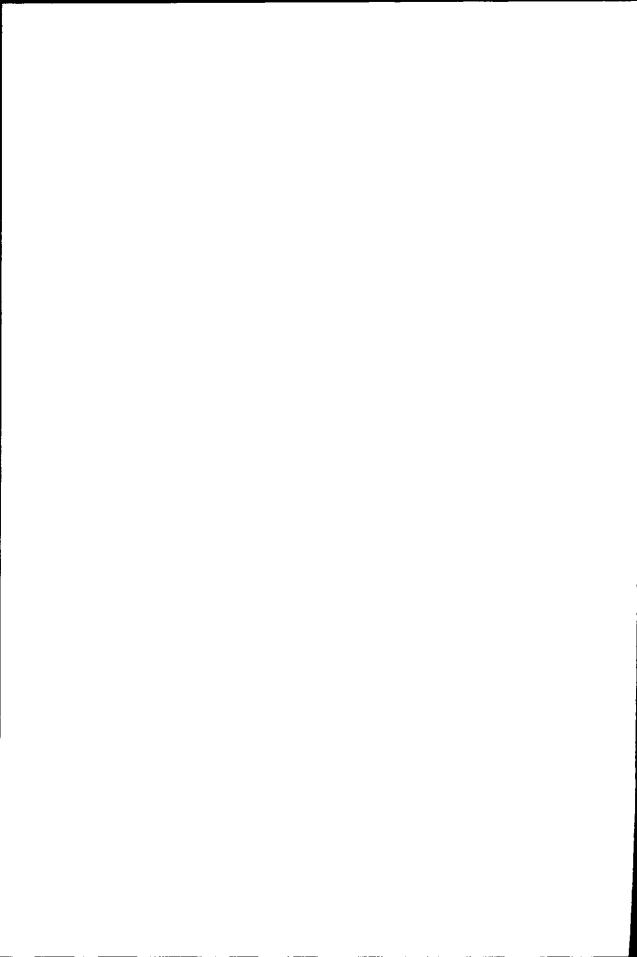
اتوتكنوبوج

ملاحظات:

- بالرسالة صفحات لم ترد بالأصل
 - بعض الصفحات الأصلية تالفة
- بالرسالة صفحات قد تكون مكررة بالرسالة صفحات قد تكون مكررة
 - بالرسالة صفحات قد يكون بها خطأ ترقيم

Thesis

Submitted to Faculty of Education Ain Shams University


Ву

Mohamad Moustafa Mahmoud B.Sc. & Education (1985)

For

The Ph.D. Degree for the teacher's preparation in science (chemistry)

Cairo-1999

Thermodynamic Standie Cyano Iron(II) Comples of the Cyano Iron(II) Comples of the Cyano Iron (II) Comples of the Cyano Iron

Thesis

Submitted to Faculty of Education Ain Shams University

Ву

Mohamad Moustafa Mahmoud B.Sc. & Education (1985)

For

The Ph.D. Degree for the teacher's preparation in science (chemistry)

Cairo-1999

Ĺ			
•			

Approval sheet

<u>Title</u>

Chromotropic and Thermodynamic Studies of Ternary Diimine-Cyanide Iron (II) - Complexes

Candidate Mohamad moustafa mahmoud

Degree Ph.D Degree for the teacher's preparation in science (chemistry)

Board of Advisors

Approved by

Signature

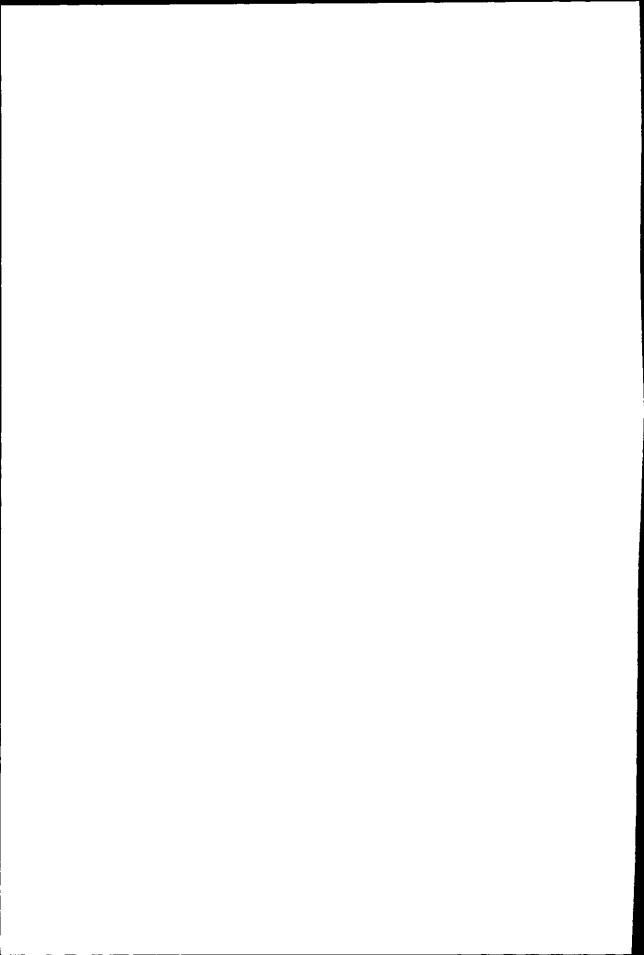
1.Prof. Dr.Atef A.T.Ramadan Prof. of Inorganic chemistry, Faculty of Education, Ain Shams University

2-Dr. Moustafa A. El -Behair Assist Prof. of Inorganic chemistry, Faculty of Education, Ain Shams University

3-Dr. Aisha I, Ismai Assist Prof. of Inorganic chemistry, Faculty of Education, Ain Shams University

4- Dr. Ali M. Taba Assist Prof. of Inorganic chemistry, Faculty of Education, Ain Shams University

Atep A.T. Rona/


Aither Some P Ali Mahmouc

Date of research / / 1998

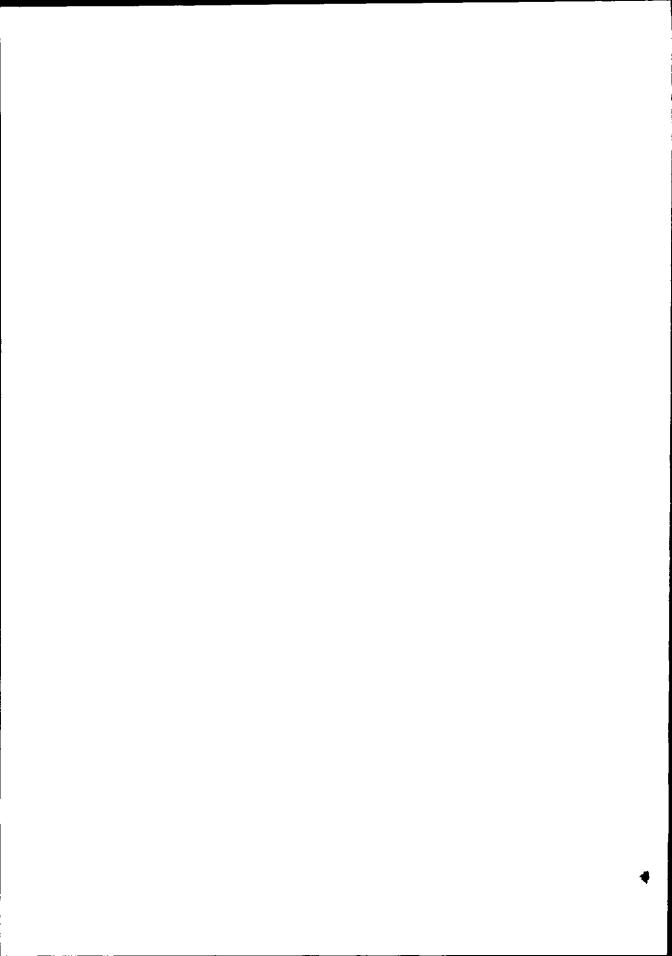
Post graduated studies

Stamp: /1998 Date of approval /1998

Approval of Faculty Council / /1998 Approval of University Council / /1998

Title Sheet

Name of Researcher : Mohamad Moustafa Mahmoud

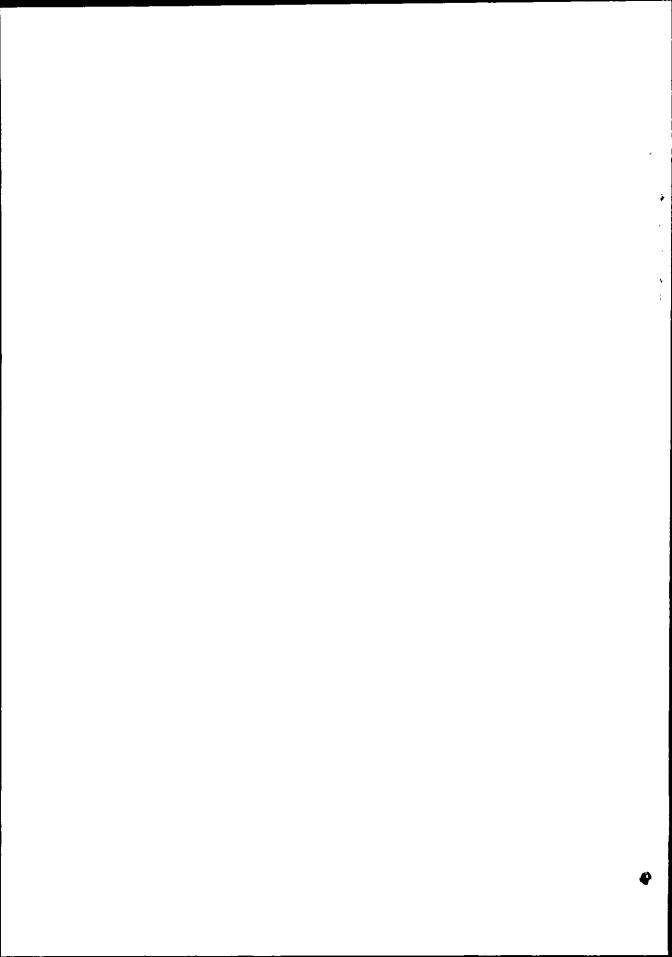

Date of Birth :26/3/1963

Place of Birth :Cairo

First University Degree :B. Sc.& Education, May 1985.

Second University Degree :M.Sc. For the Teacher's preparation in science, 1994

Name of University :Ain Shams University



ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his advisors, prof. Dr. Atef A.T.Ramadan, professor of Inorganic and Physical Chemistry, Dr. Mostafa A. El-Behairy, Assistant professor of Inorganic and Physical Chemistry, Dr. Aisha I. Ismail, Assistant professor of Inorganic and Physical Chemistry, and Dr. Ali M. Taha, Assistant professor of Inorganic and Physical Chemistry, Faculty of Education, Ain Shams University, for their directing this study. Many thanks for their guidance.

The auther wishes to express his special deep appreciation to Dr.A.A.T.Ramadan for his valuable instructions making this thesis possible in the present form and continuous guidance during the practical work.

Special thanks for prof.Dr.B.A.El-shetary and prof.Dr.M.S.Abd El-Moez, the head of Chemistry Department for their help.

List Of Contents

Aim of the work		xiv
CHAPTER I.	INTRODUCTION	
-		1
	n Solution	
	g Properties of Solvents	
1.1.3-Gorvaun	tial Solvation	16
	of Non-aqueous Solvents	
Literature Sur	vey On Thermodynamic Studies	22
CHAPTER II.	EXPERIMENTAL	
2.1-Materials		26
2.2-Purification	on of Materials	26
2.3-Preparation	on of Dicyano-Bis (1,10-phenanthroline) Iro	on (II)
Complex-		28
2.4-Solutions		30
	Measurements	
•		
CHAPTER III.	THEORTICAL BACKGROUND	
3.1-Stability	Constants and Thermodynamic Parameters-	31
3.2-Electrost	atic (el) and Non- Electrostatic (non)	
Thermody	namic Quantities	40

	3.3-Determination of the Donor and Acceptor Numbers4	2
CHA	APTER IV.	
	Donor and Acceptor Effects For The Solvatochromic	
	Behaviour of 1,10-phenanthroline Cyano Iron (II) Complex	es
	in Binary Mixtures4	5
	4.1- Binary Aqueous Mixtures45	5
	4.1.1-The Values of Δv 5	0
	4.1.2-Isosolvation Point5	4
	4.1.3-Preferential Solvation Constant5	5
	4.1.4-The area under the curve5	7
	4.1.4.i-Water-Binary Solvent Mixtures58	8
	4.2-Binary Organic Solvent Mixtures5	9
	4.2.i-Methanol-Binary Solvent Mixtures59	9
	4.2.ii-Chloroform-Binary Solvent Mixtures60)
	4.2.iii-Acetone- Binary Solvent Mixtures6	1
CHZ	APTER V.	
	Equilibrium Studies On The Interaction Of Different Cation)
	Molecules with 1,10-phenanthroline Cyano Iron (II)	
	Complex8	5
	Results8	5
	Discussion11	9
	Conclusion129	9
	Summary13	6
	References14	2

List of Figures

NO	Subject	Page
Fig.(1.1)	The environment of a cation in solution, ⊕ Metal	6
	cation; (A) primary solvent; (B) secondary solvent;	i
	(C) disordered solvent; (D) bulk Solvent	
Fig.(1.2)	1- Ethyl -4-carbomethoxy prydinuim iodide; (b) the	10
	prydinuim N-phenol-betain on whose charge-transfer	
	spectrum the Reichardt scale of E_T values is based.	
Fig.(1.3.a)	Schematic model for the homoselective solvation of	18
	$Fe(phen)_2(CN)_2$ complex (L = phen) both CN and L	
	are preferentially solvated by the same solvent A,	
	where A= water, B= MeOH.	
Fig.(1.3.b)	Schematic model for the heteroselective solvation of	18
	$Fe(phen)_2(CN)_2$ complex (L = phen) CN is	
	preferentially solvated by A and L by solvent B,	
	where A= water, B= A	
Fig.(4.1)	Electronic spectra of 1×10^{-5} M Fe(phen) ₂ (CN) ₂ solution in methanol with increasing the mole fraction of water at 25°C [mole fraction of H ₂ O, 1= 0.1, 2= 0.2, 3= 0.3, 4= 0.4, 5= 0.5, 6= 0.6, 7= 0.7, 8= 0.8, and 9= 0.9]	72
Fig.(4.2)	Electronic spectra of 1×10^{-5} M Fe(phen) ₂ (CN) ₂ solution in ethanol with increasing the mole fraction of water at 25°C [mole fraction of H ₂ O, 1= 0.1, 2= 0.2, 3= 0.3, 4=0.4, 5= 0.5, 6= 0.6, 7= 0.7, 8= 0.8, and 9= 0.9]	73

Fig.(4.3)	Electronic spectra of 1 x 10 ⁻⁵ M Fe(phen) ₂ (CN) ₂ solution in water with increasing the mole fraction of dioxane at 25°C [mole fraction of dioxane, 1= 0.1, 2= 0.2, 3= 0.3, 4= 0.4, 5= 0.5, 6= 0.6, 7= 0.7, 8= 0.8, and	74
Fig.(4.4)	9= 0.9] Coordination of Fe(phen) ₂ (CN) ₂ .2H ₂ O with acceptors.	47
Fig.(4.5)	The structure of some solvents and their acceptor sites.	49
Fig.(4.6)	Solvation of Fc(phen) ₂ (CN) ₂ in binary mixtures of water and several solvents.	75
Fig.(4.7)	Solvation of Fe(phen) ₂ (CN) ₂ in binary mixtures of waterand acetone [positive deviation]	76
Fig.(4.8)	Solvation of Fe(phen) ₂ (CN) ₂ in binary mixtures of water and methanol [negative deviation]	76
Fig.(4.9)	Solvation of Fe(phen) ₂ (CN) ₂ in binary mixtures of water and dioxane [positive & negative deviation]	77
Fig.(4.10)	Plots of spectral charge transfer energies for Fe(phen) ₂ (CN) ₂ complex with the donor numbers of several solvents.	78
Fig.(4.11)	The interaction between donor solvents and Fc(phen) ₂ (CN) ₂ Complex.	53
Fig.(4.12)	The interaction between acceptor solvents and Fe(phen) ₂ (CN) ₂ Complex.	54
Fig.(4.13)	Plots of the transition points (Xt _{H2O}) with the acceptor number of An, Ac, and Dx.	78
Fig.(4.14)	Plots of the isosolvation points (Xiso _B) with the donor numbers of several solvents.	79
Fig.(4.15)	Plots of the isosolvation points (Xiso _B) with the acceptor numbers at the isosolvation points (ANiso) of several solvents.	79