

بسم الله الرهكن الرجيم

$\infty \infty \infty$

تم رفع هذه الرسالة بواسطة /صفاء محمود عبد الشافي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون

AIN SHAMS UNIVERSITY

Since 1992

Propries 1992

أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات: لايوجد

Impact of Postoperative Hypothermia on Bleeding in Coronary Artery Bypass Surgery

Thesis

Submitted for Partial Fulfillment of Master Degree in Cardiothoracic Surgery

Ву

Mohammed Medhat Mohammed Abdullah El-hadidy

M.B., B.Ch., Faculty of Medicine, Ain Shams University.

Under Supervision of

Prof. Dr. Hany Hassan Elsayed

Professor of Cardiothoracic Surgery Faculty of Medicine – Ain Shams University

Assist. Prof. Dr. Ihab Abdelrazek Ali

Assistant Professor of Cardiothoracic Surgery Faculty of Medicine – Ain Shams University

Dr. Moustafa Gamal Eldin Elbarbary

Lecturer of Cardiothoracic Surgery Faculty of Medicine – Ain Shams University

Faculty of Medicine
Ain Shams University
2022

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I would like to express my indebtedness and deepest gratitude to Prof. Dr. Hany Hassan Sayed, Professor of Cardiothoracic Surgery, Faculty of Medicine, Ain Shams University for his valuable advice, guidance and constructive criticism, also for the invaluable assistance and efforts he devoted in the supervision of this study.

I'll never forget, how co-operative was Assist. Prof. Dr. Ihab Abdelrazek Ali, Assistant Professor of Cardiothoracic Surgery, Faculty of Medicine, Ain Shams University, also he was encouraging all the time. It is honorable to be supervised by him.

I would like also, to express my great thanks to Dr. Mostafa Gamal Elbarbary, Lecturer of Cardiothoracic Surgery, Faculty of Medicine, Ain Shams University. His valuable advises and continuous support facilitated completing this work.

Finally, I would like to express my appreciation and gratitude to all my family, especially my caring and loving parents who enlighten my life.

I would like to thank all the staff members of the Cardiothoracic Surgery department.

Mohammed Medhat Mohammed Abdullah El-hadidy

List of Contents

	Title	Page No.
I iat of	Tables	
	Tables Figures	
	Abbreviations	
	uction	
	the Work	
	v of Literature	
	y Homeostasis, Temperature Regulation	
	elines on patient blood management for adult cardiac surge	
	CTS/EACTA"	
0	Introduction	16
0	Classes of recommendations	19
0	Levels of evidence	20
0	Preoperative Management	
0	Laboratory and Point-of-Care Tests to Predict Perioperative	
0	Management of Preoperative Anticoagulant and Antiplatelet Drug	
0	Acetylsalicylic Acid	
0	ASA Discontinuation before Surgery	
0	Dual Antiplatelet Therapy	
0	Discontinuation of P2Y12 Inhibitors before Surgery	
0	Low-Molecular-Weight Heparin	
0	Vitamin K Antagonists e.g. warfrin	
0	Direct Oral Anticoagulant	
0	Different types of DOACs	
0	Intraoperative Management	
0	Surgical Techniques	
0	Off-pump Surgery	
0	Topical Haemostatics	
0	Intraoperative AnticoagulationHeparin and Anticoagulation Monitoring	
0	Individualized Heparin Management	
0	Measures to Prevent Heparin Rebound	
0	Protamine	
0	Intravascular Volume classes & levels of recommendations.	
0	Coagulation and Transfusion	
0	Procoagulant Interventions	
0		

List of Contents cont...

Title	Page N	lo

0	Tranexamic Acid	48	
0	Aprotinin	48	
0	Fresh-Frozen Plasma	50	
0	Desmopressin	51	
0	Transfusion Strategies		
0	Algorithm-Guided Therapy of Perioperative Bleeding		
0	Transfusion Triggers for Packed Red Blood Cells and Platelet		
	Concentrate	56	
0	Key messages of the Joint Effort Patient Blood Management Guidel	lines	
	for Adult Cardiac Surgery	59	
Patien	ts and Methods		
	S		
	sion		
	ary		
	ısion		
Refere	nces	90	
	Arabic Summary1		
4010			

List of Tables

Table No	. Title	Page No.
Table 1:	Classes of recommendations	
Table 3:	Laboratory and Point-of-Care Perioperative Bleeding	Tests to Predict
Table 4:	Management of Preoperative Antiplatelet Drugs	G
Table 5:	Different types of DOACs	34
Table 6:	Recommendations of surgical techn	iques36
Table 7:	Cardiopulmonary Bypass	40
Table 8:	Intraoperative Anticoagulation	41
Table 9:	Intravascular Volume	46
Table 10:	Procoagulant Interventions	47
Table 11:	Transfusion Strategies	52
Table 12:	Demographic data and history of the	e studied patients67
Table 13:	Postoperative hourly temperature studied patients	
Table 14:	Elements understudy postoperative patients	•
Table 15:	Comparison between normothermi group regarding demographic da patients	ta of the studied
Table 16:	Comparison between normothermi group regarding number of sten patients	ts of the studied

List of Tables cont...

Table No.	. Title	Page No.
Table 17:	Comparison between normothermic an group regarding temperature variation hours of the studied patients	ions in first 6
Table 18:	Comparison between normothermic and group regarding blood lost, postope stay, Hospital stay, blood units, infection of the studied patients	erative PT, ICU sternal wound
Table 19:	Univariate and Multivariate logis analysis for factors associated with Hyp	•

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Management of antiplatelet the having coronary artery bypass gra	
Figure 2:	Management of oral anticoagulation an indication for pre- and/or posto	-
Figure 3:	Haemostatic monitoring the perioperative period and positive modalities	ssible treatment
Figure 4:	Key messages of the Joint Effo Management Guidelines for Adult (
Figure 5:	Gender of the studied patients	68
Figure 6:	Number of stents of the studied pa	tients68
Figure 7:	Postoperative sternal wound infect patients	
Figure 8:	Comparison between norm hypothermic group regarding restudied patients	nean age of the
Figure 9:	Comparison between norm hypothermic group regarding gen patients	der of the studied
Figure 10:	Comparison between norm hypothermic group regarding weighthe studied patients	ght, height, BMI of
Figure 11:	Comparison between norm hypothermic group regarding nuthe studied patients	mber of stents of

List of Figures cont...

Fig. No.	Title	Page No.
Figure 12:	Comparison between nor hypothermic group regard variations in first 6 hours of the s	ing temperature
Figure 13:	Comparison between nor hypothermic group regarding by hours of the studied patients	lood loss in first 6
Figure 14:	Comparison between nor hypothermic group regarding p the studied patients	ostoperative PT of
Figure 15:	Comparison between nor hypothermic group regarding stay of the studied patients	postoperative ICU
Figure 16:	Comparison between nor hypothermic group regarding hospital stay of the studied patier	ng postoperative
Figure 17:	Comparison between nor hypothermic group regarding punits needed for transfution for the	ostoperative blood

List of Abbreviations

Abb.	Full term
ACC	Aguta garanawa gandrama
	.Acute coronary syndrome .Activated clotting time
	9
AKI	Acute Ridney injury. Acute normovolaemic haemodilution
	Activated partial thromboplastin time
ASA =	
AT	
	.Coronary artery bypass grafting
CI	
	.Chronic kidney disease
	.Cardiopulmonary bypass
	Dual antiplatelet therapy
DDAVP	
	Direct oral anticoagulant
EACA	
	European Association of
D110111	CardiothoracicAnaesthesiology
EACTS	European Association for Cardio-ThoracicSurgery
	Extracorporeal circulation
	Extracorporeal life support
	Extracorporeal membrane oxygenation
EPO	
FFP	
FXIII	<u>-</u>
GPIIb/IIIa	
Hb	- A
	.Hydroxyethyl starches
	.Heparin-induced thrombocytopenia
HR	
	International normalized ratio
	.Low-molecular-weight heparin
	.Myocardial infarction

List of Abbreviations cont...

Abb.	Full term
MiECC	Minimally invasive extracorporeal
	circulationcircuit
MIIF	Modified ultrafiltration
OR	
	Patient blood management
	Prothrombin complex concentrate
	Platelet concentrate
PMEA	Poly2-methoxyethylacrylate
POC	Point-of-care
PRBC	Packed red blood cells
RAP	Retrograde autologous priming
RCT	Randomized controlled trial
rFVIIa	Recombinant activated factor seven
RR	Risk ratio
SD	Solvent-detergent
TEG	Thromboelastography
TEM	Thromboelastometry
TRALI	Transfusion-related acute lung injury
TRIM	Transfusion-related immune modulation
TXA	
UFH	Unfractionated heparin
VKA	Vitamin K antagonist

INTRODUCTION

ypothermia is defined as a core body temperature less than $35^{(1)}$.

Although hypothermia is known to decrease the metabolic demand of the body and promotes impairment in various systems causing decrease oxygen release to tissues.

Hypothermia results in impairment of the coagulation cascade and the white cell count also decreases (2), hypothermia impairs immune function so nosocomial pneumonia will occur in over half of patients who are hypothermic for more than 7 days. (3)

Hypothermia-induced increase in catecholamines leads to an increase in cardiac output and oxygen demand. (4)

As a result of prolonged hypothermia, bleeding time will be increased due to its effects on platelets count and function (5,6). Platelets also are been sequestrated through RES system (liver/spleen). (7,8,9)

Postoperative bleeding and transfusion occur few hours after surgery 6-24 hrs, so we monitor carefully the body core temperature (BMT) in ICU for the first 6 hours postoperatively.

Before discussing the result of our study and comparing them and see the effect, we shall start by reviewing some of the most important topics regarding cardiovascular system anatomy, physiology and the coronary system itself, with discussion of the coagulation cascade physiology and body homeostasis associated with temperature changes.

AIM OF THE WORK

The aim of this prospective study was to evaluate the influence of core temperature on postoperative amount of blood loss, transfusion requirements, coagulation profile and the length of hospital stay in patients undergoing on pump coronary artery bypass grafting operations

REVIEW OF LITERATURE

Body Homeostasis, Temperature Regulation

Introduction

hermoregulation is a mechanism by which mammals maintain body temperature with tightly controlled self-regulation independent of external temperatures. Temperature regulation is a type of homeostasis and a means of preserving a stable internal temperature in order to survive. Ectotherms are animals that depend on their external environment for body heat, while endotherms are animals that use thermoregulation to maintain a somewhat consistent internal body temperature even when their external environment changes. Humans and other mammals and birds are endotherms. Human beings have a normal core internal temperature of around 37 degrees Celsius (98.6 degrees Fahrenheit) measured most accurately via a rectal probe thermometer. This is the optimal temperature at which the human body's systems function. Thermoregulation is crucial to human life; without thermoregulation, the human body would cease to function. Thermoregulation also plays an adaptive role in the body's response to infectious pathogens. [9][10]

Issues of Concern

The body's core internal temperature has a narrow range and typically ranges 97-99 F with tight regulation. When the body's ability to thermoregulate becomes disrupted it can result in overheating (hyperthermia) or being too cool (hypothermia).