

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

NEW ANALYTICAL TECHNIQUES FOR BOTH DG HOSTING AND SIMULTANEOUS WITH DISTRIBUTION SYSTEM RECONFIGURATION TO REDUCE ELECTRIC POWER LOSS

By Mohamed Ahmed Sayed Ahmed Abdelkader

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Electrical Power and Machines Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2019

NEW ANALYTICAL TECHNIQUES FOR BOTH DG HOSTING AND SIMULTANEOUS WITH DISTRIBUTION SYSTEM RECONFIGURATION TO REDUCE ELECTRIC POWER LOSS

By

Mohamed Ahmed Sayed Ahmed Abdelkader

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr. Zeinab H. M.	Assoc. Prof. Dr. Mostafa A.
Osman	Elshahed

Professor of electrical power systems Electric Power Engineering Department Faculty of Engineering, Cairo University Associate Professor Electric Power Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT 2019

NEW ANALYTICAL TECHNIQUES FOR BOTH DG HOSTING AND SIMULTANEOUS WITH DISTRIBUTION SYSTEM RECONFIGURATION TO REDUCE ELECTRIC POWER LOSS

By

Mohamed Ahmed Sayed Ahmed Abdelkader

A Thesis Submitted to the

Faculty of Engineering at Cairo University

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Electrical Power and Machines Engineering

Approved by the Examining Committee

Prof. Dr. Zeinab H. M. Osman, Thesis Main Advisor

Prof. Dr. Mohamed EL Sobki, Internal Examiner

Prof. Dr. Ebtisam Mostafa Mohamed Saied, External Examiner Shobra Faculty of Engineering, Banha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT 2019 **Engineer's Name:** Mohamed Ahmed Sayed

Ahmed Abdelkader

Date of Birth: 12/01/1986

Nationality: Egypt

E-mail: mhdreto@yahoo.com

Phone: 01147133375

Address: 6th October City, Giza

Registration Date: 1/10/2014

Awarding Date: 2019

Degree: Doctor of Philosophy

Department: Electric Power and machines Engineering

Supervisors:

Prof. Dr. Zeinab H. M. Osman

Associate Prof. Dr. Mostafa A. Elshahed

Examiners:

Prof. Dr. Zeinab H. M. Osman (Thesis Main Advisor)

Prof. Dr. Mohamed EL Sobki (Internal Examiner)

Prof. Dr. Ebtisam Mostafa Mohamed Saied (External Examiner,

Shobra Faculty of Engineering, Banha University)

Title of Thesis:

New Analytical Techniques for Both DG Hosting and Simultaneous with Distribution System Reconfiguration to Reduce Electric Power Loss

Key Words:

Power flow; power loss reduction; distribution system; distributed generation; reconfiguration

Summary:

First, this thesis presents a new forward algorithm for balanced three-phase load-flow analysis of active and passive radial distribution networks (RDNs). Second, a successive analytical formula (AF) for system loss reduction to allocate multiple Distributed Generation (DG) units is deduced considering the mutual influence of all DG units. The effects of some operation changes are analytically included. Third, a Pivot for Simultaneous Reconfiguration and DG Hosting (PSRH) is introduced to analytically reduce the system loss based on a proposed Pivot Curve Analytical Tool (PCAT), which utilizes a single power flow run.

Disclaimer

I hereby	declare	that th	is thesis	is	my	own	original	work	and	that	no	part	of	it	has	been
submitted fo	or a degr	ee qual	ification	at	any	othe	r univers	ity or	insti	tute.						

I further declare that I have appropriately acknowledged all sources used and have cited

them in the references section. Name:	11	1	•	C	Date:
Signature:					

Acknowledgement

First and foremost thanks to **ALLAH** for helping me to accomplish this work.

I would like sincerest my gratitude to **Prof. Dr. Zeinab Hanem Mohamed Osman** for her excellent supervision of this thesis.

In addition, I thank **Associate Prof. Dr. Mostafa A. Elshahed**, whose passion for this thesis had lasting effect. I also thank the **University of Cairo** for consent to include copyrighted figures and tables as a part of my thesis.

I would like to express my deep appreciation to **my father**, **my mother and my wife** for their continuous encouragement and moral support.

Many people, especially my classmates have made valuable comment suggestions on my thesis which gave me an inspiration to improve the quality of the assignment.

Table of Contents

List of	f Tables	vi
List of	f Figures	vii
Abbre	eviations	ix
Symbo	ols	xi
Abstr	act	xiii
Chapt	ter 1: Introduction	1
1.1.	Problem statement and thesis motivation	1
1.2.	Thesis objectives	1
1.3.	Thesis outlines	2
Chapt	er 2: Literature Survey	5
2.1.	Power Flow	5
2.2.	Multiple DGs allocation	6
2.3.	Simultaneous reconfiguration with DGs	8
Chant	ter 3: A New Power Flow Algorithm for Passive and Active	Radial
Спарс	Distribution Networks	
3.1.	Introduction	11
3.2.	RDN description and model	11
	3.2.1. Network Arrangement	11
	3.2.2. Distribution	11
	3.2.3. Loads 12	
	3.2.4. Distributed Generation	12
3.3.	Proposed Load Flow Algorithm	12
3.4.	Applications and Discussions	14
	3.4.1. Overview on Case Studies	14
	3.4.2. Illustrated Case Study	15
	3.4.3. Case Studies Considering Load Type and Level	17
	3.4.4. Case Study of Optimization DG Size	19
	3.4.5 Application on a Real RDN of 6 th October City in Egypt	20

3.5.	Main Features and Distinctions of the Proposed Algorithm	22
3.6.	Summary	23
Chapt	ter 4: Analytical Formula for DG Allocation Features and Applications	25
4.1.	Introduction	25
4.2.	Single DG allocation to minimize the total loss	25
	4.2.1. AF derivation for single DG with unity PF	25
	4.2.2. Allocation features according to AF	27
	4.2.3. Studying the effect of changing load level, <i>Ri</i> value, STT, and DG pow factor using AF	
4.3.	Multiple DGs allocation	33
	4.3.1. Sizing optimization problem	33
	4.3.2. Placement optimization problem	35
4.4.	Results and discussions	38
	4.4.1. Placement of a single DG with unity PF	38
	4.4.2. Allocation results of multiple DGs with unity PF	40
	4.4.2.1. Results of optimal sizing of DGs	40
	4.4.2.2. Results of optimal locations for multiple DG units	41
	4.4.3. Allocation of multiple DGs with non-unity PFs	44
	4.4.4. Results of changing the load levels, STT, and <i>Ri</i>	45
4.5.	Summary	47
Chapt	ter 5: Analytical Simultaneous Feeder Reconfiguration and DG Hosting Allocation Approach	49
5.1.	Introduction	49
5.2.	Utilization of the single DG optimization equations for the reconfiguration	49
5.3.	Analysis study of pivot curve	51
	5.3.1. Pivot definition and assessment its value	51
	5.3.2. The series operation	53
	5.3.3. The branching operation	54
	5.3.4. The branching versus series operation	56
	5.3.5. Optimization analysis of smoothing the diff curve for simultaneous reconfiguration with DGs	58
5.4.	Proposed PSRH algorithm	62

	5.4.1. Branch disconnection	62
	5.4.2. Switching on the tie switches	64
5.5.	Optimal allocation of the DG units	66
5.6.	Applications	66
5.7.	Comparative results and discussion	78
5.8.	Summary	85
Chapt	er 6: Conclusions and future work	87
6.1.	Summery	87
6.2.	Conclusions	87
6.3.	Future work	88
Refere	ences	91
Appen	ndix A The pseudo code of the proposed algorithm	97
Appen	ndix B The data of the real RDN of 6 th October city in Egypt	98

List of Tables

Table 3.1 Results of IEEE 9 bus system voltage drops for the first iteration
Table 3.2 Results of IEEE 9 bus system voltages for the first iteration
Table 3.3 First iteration results, no. of iterations and executed time for IEEE 29 and 69 Bus
systems
Table 3.4 Comparative results of various load types for IEEE 29 bus and IEEE 69 bus
systems
Table 3.5 Comparison of a single DG optimal size between the final solution and the first
iteration solution
Table 4.1 Results of AF to determine the single DG optimum location for IEEE 69-bus
system39
Table 4.2 The proposed iterative process results for optimal sizing of DGs at buses 64, 26,
and 68 in IEEE 69-bus system41
Table 4.3 Three DGs optimal placement of paths 6, 1, and 8 for IEEE 69-bus
system
42
Table 4.4 A comparative study for IEEE 33 and 69-bus systems with DG of unity PF44
Table 4.5 A comparative study for IEEE 33 and 69-bus systems with DGs of non-unity
PF45
Table 4.6 A comparative study for the load growth in case of inserting multiple DG units in
IEEE 33-bus system46
Table 5.1 Optimal m and n values for RO and RSDG1
Table 5.2 Solution sequences for reconfiguration of 33, 69, and 84 RDNs74
Table 5.3 Comparative results for various reconfigurations of 33 RDN considering DGs80
Table 5.4 Comparative results for various reconfigurations of 69 RDN considering DGs81
Table 5.5 Comparative results for various reconfigurations of 84 RDN considering DGs81
Table B. 1 The load data98
Table B. 2 The line data

List of Figures

Fig. 3.1 The proposed sequential order of subsystems for a simple RDN	12
Fig. 3.2 Flowchart of the Proposed Load Flow	13
Fig. 3.3 Solution progress of the IEEE 9 bus system during the first iteration	. 16
Fig. 3.4 Solution progress of bus 9 through the first iteration for three load type	. 17
Fig. 3.5 Solution progress of bus 9 through the first iteration for various load levels of CZ	
type	
Fig. 3.6 Sketched SLD of a real RDN of 6 th October city in Egypt	
Fig. 3.7 Bus voltage results of a real RDN of 6 th October city in Egypt	
Fig. 4.1 Rp variations with respect to \Re	
Fig. 4.2 Practical values of $\Im p - 1 \to p$ and $\Re p - 1 \to p$ of IEEE 33-bus system	29
Fig. 4.3 Explanation of paths	
Fig. 4.4 The proposed iterative process of the multiple DGs; (a) optimal sizing, (b) optimal	
placement	
Fig. 4.5 Path numbering for 69-bus system	
Fig. 4.6 Plotted results of AF to determine the single DG candidate locations for IEEE 69-1	
system.	.40
Fig. 4.7 Plotting of three DGs optimal placement of paths 6, 1, and 8 for IEEE 69-bus	
system	
Fig. 5.1 A simple RDN with only <i>diff</i> 1	
Fig. 5.2 The diff curves of 33 RDN with and without the optimal solutions of multiple DG	
allocation	
Fig. 5.3 Pivot Definition	
Fig. 5.4 The relation between resistances and loading ratios versus m and n , respectively	51
Fig. 5.5 An illustrative RDN for exchanging the locations of two series resistances for all	5 0
values of m	
Fig. 5.6 Pivot assessment for resistances in series operation.	
Fig. 5.7 An illustrative RDN for exchanging the locations of two series loads for all values	
of n	
Fig. 5.8 Pivot assessment for loads in series operation.	
Fig. 5.9 Changing of R and I for different values of m	
Fig. 5.10 Changing of R and I for different values of n	54
Fig. 5.11 An illustrative RDN for exchanging the locations for all values of m and n for	<i>5 5</i>
branching operation	
Fig. 5.12 The pivots analysis for the branching operation.	
Fig. 5.13 The equally pivots analysis of the branching operation	36
Fig. 5.14 An illustrative RDN for exchanging the locations for all values of m and n for	-7
series operation	
Fig. 5.15 The system loss for series and branching operation	
Fig. 5.16 The pivots for series and branching operation	38
Fig. 5.17 Effect of changing n on system loss without DG ($PLwoDG$) and with DG	60
(PL2min)	
Fig. 5.18 Effect of changing <i>m</i>	00

Fig. 5.1	19 Sketched curves for improvement and worsening of <i>Piv</i> and for disconnecting	
	decision	63
Fig. 5.2	20 PSRH flowchart of connecting and disconnecting decisions to smooth PCAT	65
Fig. 5.2	21 The base case SLD of 33 RDN	68
Fig. 5.2	22 The base case of 33 RDN without connecting any tie switches	68
Fig. 5.2	23 The reconfiguration SLD of 33 RDN after connecting tie switch 35 and	
	disconnecting branch 11	69
Fig. 5.2	24 The reconfiguration of 33 RDN after connecting tie switch 35 and disconnecting	
	branch 11	69
Fig. 5.2	25 The reconfiguration SLD of 33 RDN after connecting (35, 33) and disconnecting	
	(11, 7)	70
Fig. 5.2	26 The reconfiguration of 33 RDN after connecting (35, 33) and disconnecting (11,	
	7) 70	
Fig. 5.2	27 The reconfiguration SLD of 33 RDN after connecting (35, 33, 37) and	
	disconnecting (11, 7, 28)	
Fig. 5.2	28 The reconfiguration of 33 RDN after connecting (35, 33, 37) and disconnecting (1	
	7, 28)	71
Fig. 5.2	29 The reconfiguration SLD of 33 RDN after connecting (35, 33, 37, 36) and	
	disconnecting (11, 7, 28, 32)	
Fig. 5.3	30 The reconfiguration of 33 RDN after connecting (35, 33, 37, 36) and disconnecting	_
	(11, 7, 28, 32)	
_	31 The base case SLD of 84 RDN [112]	
_	32 Solution sequence of the reconfiguration for 33 RDN	
_	33 Solution sequence of the reconfiguration for 69 RDN	
_	34 Solution sequence of the reconfiguration of subsystem A84	
_	35 Solution sequence of the reconfiguration of subsystem B84	
_	36 Continue of solution sequence of the reconfiguration of subsystem B84	78
Fig. 5.3	37 Comparative results of PSRH and RSDG3 of [70] for 33 RDN in case of	
	maintaining and disconnecting of all DGs	
Fig. 5.3	38 Comparative results of PSRH and [70] in case of optimal RSDG for 84 RDN after	
	removing all DGs	83
Fig. 5.3	39 Comparative results of PSRH and [86] for optimal RO for 84 RDN without	
	inserting DGs	84