

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Ain Shams University
Faculty of Engineering
Department of Architecture Engineering

Impact of Intelligent Skin Façade on Daylighting Performance in Educational Spaces by Using Sun-Tracking System

A Thesis Presented in Partial Fulfillment of the Requirements for Master of Science Degree in Architecture Engineering

Presented by

Alaa Abdulaziz Fathy

BSc in Architecture 2014 – Ain Shams University

Supervised by

Prof. Dr. / Hanan Mostafa Kamal Sabry

Professor of Environmental Design and Control, Department of Architecture, Faculty of Engineering, Ain Shams University

Prof. Dr. / Ahmed Atef El-Desouky Faggal

Professor of Environmental Design and Control, Department of Architecture, Faculty of Engineering, Ain Shams University

Dr. / Ashraf Ali Ibrahim Nessim

Associate Professor of Environmental Design and Control, Department of Architecture, Faculty of Engineering, Ain Shams University

Cairo, Egypt

2020

Name: Alaa Abdulaziz Fathy Abdelmo	ohsen
Thesis Title: Impact of Intelligent Skin Performance in Educational Spaces by	, , ,
Degree: Master of Science Degree in A	Architectural Engineering
Thesis Defense Date:/	
The Jury Committee:	
Prof. Dr. Ayman Hassan Ahmed	
Professor of Architecture, Departm Engineering, Cairo University	nent of Architecture, Faculty of
Prof. Dr. Morad Abdelkader Abdeln	nohsen
Professor of Environmental Desig Architecture, Faculty of Engineering, A	• •
Prof. Dr. Hanan Mostafa Kamal Sab	ory
Professor of Environmental Desig Architecture, Faculty of Engineering, A	• •
Prof. Dr. Ahmed Atef El-Desouky Fa	aggal
Professor of Environmental Desig Architecture, Faculty of Engineering, A	
Post Graduate Studies:	Faculty Council Approval
Approval Stamp /	Faculty Council Approval
Thesis was approved on	University Council Approval
/	

Statement

This Thesis is submitted as partial fulfillment of M.Sc. degree in Architecture, Faculty of Engineering, Ain Shams University. The work include in this thesis is carried out by the author at the Department of Architecture, Faculty of Engineering, Ain Shams University, and During the period from March 2015 to April 2020.

No Part of this thesis has been submitted for a degree of a qualification at any other scientific entity.

, , , , , , , , , , , , , , , , , , ,	
Name: Alaa Abdulaziz Fathy	
Signature:	

Date:

Examiners Committee	Signature
Professor Dr. Ayman Hassan Ahmed Professor of Architecture Department of Architecture Faculty of Engineering Cairo University	
Professor Dr. Morad Abdelkader Abdelmohsen Professor of Environmental Design and Control Department of Architecture Faculty of Engineering Ain Shams University	
Professor Dr. Hanan Moustafa Sabry Professor of Environmental Design and Control Department of Architecture Faculty of Engineering Ain Shams University	
Professor Dr. Ahmed Atef Faggal Professor of Environmental Design and Control Department of Architecture Faculty of Engineering Ain Shams University	

It has been a long road to finalize my thesis, this would never have been done without the support and guidance of so many individuals.

First and foremost, I would like to express my deep and gratitude to my research supervisor, Dr. Ahmed Atef El-Dessouki Faggal and Dr. Ashraf Ali Nessim, thank you for your support and insightful comments. To Dr. Hanan Mostafa Kamal Sabry, I specially thank you for your effort, guidance and emotional support throughout this research. Your vision and motivation have deeply inspired me. It was a great privilege and honor to work and study under the guidance of all supervisors.

Also, I would like to extend my gratitude to Eng Fatma Fathy for enlightening me the first glance of research.

I would also like to thank my friends for your emotional support and caring.

I am extremely grateful to my family, my father Abdulaziz Fathy, my mother Manal Mahmoud, my brother Wael Abdulaziz, and my brother Ehab Abdulaziz for their love, prayers and continuing support to complete this research work.

Building skin plays the main role in delivering daylighting inside the building. Meanwhile, sun-tracking system is one of the efficient daylighting systems that achieves good daylighting & glare protection. PV panels are one of the sun-tracking systems in the field of solar energy application. Thus, this thesis identifies the parameters of integrating IPSF (Intelligent Photovoltaic Skin Façade) as tracking system as well as intelligent skin facade to achieve efficient design to improve the efficiency of daylighting performance in a lecture hall. This thesis is evaluated a typical lecture hall space under the desert climate of the city of Cairo, Egypt that is characterized by sunny clear skies through simulation process and computational methods.

The thesis consists of five chapters. Chapter One studied theoretically the intelligent systems and building envelopes types, characteristics, and the ability to be applied in hot arid climates. Chapter Two studied analytically the parameters of daylighting systems as sun-tracking systems. Chapter Three studied analytically the effect of daylighting performance in educational spaces through reviewing examples of BIPV applied in educational spaces to set design guidelines. In Chapter Four, a generic lecture hall (base case) is modeled and tested under the climate conditions of Cairo's weather and its daylighting performance is analyzed. The tested cases are modeled using Grasshopper and Rhinoceros 3D modeling software. In Chapter Five, integrated PV panels as intelligent skin façade of case studies and its effect on daylighting performance are investigated and analyzed.

The simulation is conducted by using Diva-for-Rhino to interface Radiance and Daysim for dynamic daylighting simulation and illuminance level calculations. Dynamic Daylighting Performance Metrics (DDPM) is used to evaluate the daylighting adequacy level by using Point in Time (PT) metric, while visual comfort assessment is calculated and evaluated through (DGP) Daylight Glare Probability. The results provide expanded data of the performance assessment of the IPSF according to the different parameters as orientations, module arrangement and shading areas, which serves as a basis of the integrated PV module and how it affects the efficiency of daylighting needed in designing shading system.

Keywords

Building-integrated photovoltaics, Intelligent skin, Daylighting performance, Shading devices, Sun-tracking systems, Daylight Availability, Daylight Glare Probability

Statem	entii
Examin	ners Committeeiii
Acknow	vledgementsiv
Abstrac	etv
Table o	f Contentsvii
List Fig	guresxi
List of	Tablesxiii
Introduc	etion1
Introdu	action3
Overvie	w3
Thesis I	Problem4
Thesis A	Aim and Objectives5
Thesis I	Methodology5
Scope a	nd Limitation:6
Thesis S	Structure6
Chapte	r 1 - Building Envelope and Intelligent Building Systems13
1.1	Introduction:
1.2	Intelligence in Architecture:
1.2.1	Definitions of Intelligent Building:
1.2.2	Function of Intelligence in Architecture:
1.2.3	Function of Intelligent Buildings:
1.2.4	Intelligent Systems in Architecture:
1.2.5	Adaptive Building Façade:
1.3	The effect of Intelligent Skin on Daylighting Performance21
1.4	Previous Research Related to Intelligent Skin on Daylighting
	nance:
1.5	Conclusion
Chapte	r 2 - Sun-tracking System in Buildings31
2.1	Introduction31
2.2	Daylighting Systems31

Table of Contents

2.3	Daylighting Performance of Innovative Sun-Tracking Systems		
2.4	Sun-tracking Systems34		
2.5	Types of Sun tracking systems		
2.6	Conclusion44		
Chapte	r 3 - Daylighting Performance in Educational Buildings47		
3.1	Introduction47		
3.2	Effect of Daylighting Performance in Educational Spaces 47		
3.2.1	Daylighting Guidelines in Educational Building: 48		
3.3	Integrating PV Modules as Intelligent Skin Façade System50		
3.4	Types of Photovoltaic Modules51		
3.4.1	Photovoltaics Crystalline modules:		
3.4.2	Photovoltaics Amorphous Modules:		
3.4.3	Organic PV:		
3.5	Applied Examples: Integrated of PV Systems in Educational		
Building	gs54		
3.5.1	University Lecture Hall in Valladolid:54		
3.5.2	William Rankine Building, University of Edinburgh: 57		
3.5.3	Norwegian University of Science and Technology (NTNU):59		
3.5.4	Life Science Building, University of Washington:		
	61		
3.6	Conclusion63		
_	r 4 - Simulation Tools and Methodology of Daylighting		
Perform	nance69		
4.1	Introduction69		
4.2	Daylight Metrics Classifications69		
4.2.1	Quantitative Daylight Metrics:		
4.2.2	Qualitative Daylight Metrics:		
4.3	Parameters of The Base Case71		
4.3.1	Location:		
4.3.2	Base Case Specifications		
4.4	Description of Intelligent Sun-tracking PV Skin73		

4.5	Simulation Parameters	74
4.5.1	Simulation Criteria:	74
4.5.2	Daylighting Simulation:	75
4.5.3	Working Plane:	75
4.6	Base Case Simulation Results	75
4.6.1	Point in Time Analysis:	75
4.6.2	Glare Analysis	77
4.7	Conclusion	79
Chapte	r 5 – Daylighting Performance Analysis and Results	83
5.1	Introduction:	83
5.2	Shading Device:	83
5.3	Intelligent PV Skin Façade Simulation	
5.3.1	Intelligent PV Skin Façade (IPSF) Geometry:	
5.3.2	Tilt Angles:	85
5.3.3	Photovoltaics Modules Selection:	88
5.3.4	Usability of the PV panel:	88
5.3.5	Constructability of the PV panel:	89
5.3.6	PV Panel Component:	89
5.4	Simulated Cases Specifications:	90
5.5	Results of Point in Time	91
5.5.1	South Oriented Façade:	91
5.5.2	South Orientation Results and Discussion:	95
5.5.3	East Oriented Façade:	96
5.5.4	East Orientation Results and Discussion:	99
5.5.5	South-East Oriented Façade:	100
5.5.6	South-East Orientation Results and Discussion:	103
5.6	Glare Analysis Results:	104
5.6.1	South Orientation:	104
5.6.2	East Orientation:	105
5.6.3	South-East Orientation:	107
5.7	Conclusion:	109
5.7.1	South Oriented Façade:	109

Table of Contents

5.7.2	East Oriented Façade:	109
5.7.3	South-East Oriented Façade:	110
Conclus	sion and Recommendations	113
6.1	Conclusion:	113
6.1.1	Recommendations/ Future Research Work:	119
Append	lices	121
Append	lices: Optimization Results	123
A.	Point in Time Simulation Results	123
B.	Glare Analysis Results	125
Referen	ces	145