

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The relationship between serum homocysteine level and cognitive function in elderly patients with chronic kidney disease

Thesis

Submitted in Partial Fulfillment for MD degree in Geriatrics and Gerontology

By

Yumna Abdellatif Elsafy Elgazzar

(Msc – Geriatrics and Gerontology)

Supervised by

Prof. Dr. Hala Samir Sweed

Professor of Geriatrics and Gerontology Faculty of Medicine – Ain Shams University

Prof. Dr. Tomader Taha Abdel Rahman

Professor of Geriatrics and Gerontology Faculty of Medicine – Ain Shams University

Dr. Heba Youssif Youssif Kamel

Assistant Professor of Geriatrics and Gerontology Faculty of Medicine – Ain Shams University

Dr. Ramy Mohamed Mahmoud

Lecturer of Clinical Pathology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and for most, thanks to **Allah** "The Most Merciful"

In all gratitude, I extend my most sincere thanks to **Prof. Dr. Hala Samir Sweed,** Professor of Geriatrics and Head of Geriatric Medicine Department, Faculty of Medicine, Ain Shams University, for honoring me with her supervision of this thesis. Her help, guidance, and valuable advices were a great encouragement throughout the work.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Tomader Taha Abdel Rahman** Professor of Geriatric Medicine, Ain Shams University, for her supervision, valuable instructions and guidance.

I am deeply indebted and sincerely thankful to **Dr. Heba**Youssif Youssif Kamel, Assistant Professor of Geriatric
medicine, Ain Shams University, who gave me valuable help
and directions throughout the work.

I wish to express my great thanks and gratitude to **Dr. Ramy Mohamed Mahmoud,** Lecturer of Clinical Pathology, Ain
Shams University, for his kind supervision and great help in this work.

Last but not least, I would present all my appreciations to my Family and colleagues without them; this work could not have been completed; to them I dedicate this work.

Yumna Elgazzar

List of Contents

Title	Page No.
List of Tables	i
List of Figures	iv
List of Abbreviations	v
Introduction	1
Aim of the Work	4
Review of Literature	
Homocysteine Neurotoxicity	5
Homocysteine and Kidney Disease	18
Cognitive Impairment in Chronic Kidney Disea	ıse28
Subjects and Methods	44
Results	52
Discussion	75
Conclusion	88
Study Limitations and Future Recommendations	89
Summary	
References	94
Appendices	126
Arabic Summary	

List of Tables

Table No.	Title Page N	lo.
Table (1):	Comparison between cases (CKD) and control as regards socio- demographic variables	52
Table (2):	Comparison between cases (CKD) and control as regard associated co-morbidities	54
Table (3):	Distribution of the stage of CKD among cases.	55
Table (4):	Disease duration (Mean ± SD) among CKD cases	55
Table (5):	Comparison between cases of CKD and control as regards the mean serum creatinine, eGFR, and the mean serum homocysteine level.	56
Table (6):	Comparison between different stages of CKD cases as regard mean serum creatinine, eGFR and serum homocysteine level	57
Table (7):	Distribution of Clinical Dementia Rating scale scores among CKD cases and control subjects	59
Table (8):	Comparison between CKD cases and controls as regards the results of CDR (Clinical Dementia Rating Scale) intact or impaired cognition.	59
Table (9):	Comparison between Cases of CKD and Controls as regard the CERAD-NB subtests scores	60
Table (10):	Comparison between CKD cases of different stages as regard the CERAD-NB subtests scores	62

List of Tables Cont...

Table No.	Title	Page No.
Table (11):	Correlation coefficient between the NB subtests performance and parameters (Age, education, s. ceGFR and s. homocysteine) in moderate CKD cases (stage 3)	different creatinine, mild to
Table (12):	Correlation coefficient between the NB subtests performance and parameters (Age, education, s. eGFR and s. homocysteine) in CKD cases (stage 4)	different creatinine, advanced
Table (13):	Correlation coefficient between the NB subtests performance and parameters (Age, education, s. c. eGFR and s. homocysteine) in ES (CKD stage 5)	different creatinine, SRD cases
Table (14):	Correlation coefficient between homocysteine level and the Ci subtests performance and in CKD	ERAD-NB
Table (15):	Comparison between the mean homocysteine level and gender, status, marital status, education, of diabetes, presence of hyperter presence of heart disease among Cartesian comparison.	working presence nsion and
Table (16):	Correlation coefficient between Claratic Total Scores and age, education among Cases of CKD	onal level
Table (17):	Correlation coefficient between Countries and serum homocysteis serum creatinine, Stage of CKD and duration among CKD cases	ne, eGFR, nd disease

List of Tables Cont...

Table No.	Title Page 1	V o.
Table (18):	Backward linear regression model for the CERAD-NB total score-I and significant predictors of the score	72
Table (19):	Backward linear regression model for the CERAD-NB total score-II and significant predictors of the score	74

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Homocysteine metabolic pathway	6
Figure (2):	Comparison between stages of CK as regards the mean eGFR and homocysteine level.	serum
Figure (3):	Correlation coefficient between homocysteine level and CERAD tot I	al score
Figure (4):	Correlation coefficient between homocysteine level and CERAD tot II.	

List of Abbreviations

Abb.	Full term
%ICV	Percentage of intracranial volume
	Beta-amyloid plaques
•	Alzheimer's disease
	Activity of Daily Living
	Blood brain barrier
	Clinical Dementia Rating
	Consortium to Establish a Registry for
	Alzheimer's disease neuropsychological
	battery
CKD	Chronic kidney disease
CVD	Cardiovascular disease
DM	Diabetes Mellitus
DTI	Diffusion tensor imaging
eGFR	Estimated glomerular filtration rate
ELIZA	Enzyme-Linked Immunosorbent Assay
ESRD	End-stage renal disease
FA	Folic Acid
FA	Fractional anisotropy
Hcy	Homocysteine
HHcy	Hyperhomocysteinemia
HTN	Hypertension
MCI	Mild cognitive impairment
MD	Mean diffusivity
MDRD	Modification of Diet in Renal Disease
Met	Methionine
mGluR1	Metabotropic glutamate receptors subtype1
MMSE	Mini Mental State Examination Scores
MOCA	Montreal Cognitive Assessment
MRI	Magnetic resonance imaging

List of Abbreviations Cont...

Abb. Full term
NAC N-acetylcysteine
NF-KappaBNuclear factor kappa B
NFTsNeurofibrillary tangled
NMDA N-methyl-D-aspartate
PTH Parathyroid hormone
RRTRenal replacement therapy
SAHS-adenosyl homocysteine
SAMS-adenosyl methionine
tHcyTotal plasma homocysteine
VaD Vascular dementia
VAT Vascular access thrombosis
VISP Vitamin Intervention for Stroke Prevention
VITATOPS Vitamins To Prevent Stroke
VTE Venous thromboembolism
WMLs White matter lesions

Introduction

Patients with chronic kidney disease (CKD) have been found to have cognitive impairment. However, the core features and clinical correlates of the development of cognitive impairment and chronic kidney disease are still unclear. Cognitive impairment was described as an occult burden prevalent in CKD and end-stage renal disease (ESRD) patients. Several studies have suggested its occurrence in earlier stages of kidney disease but unacknowledged as a significant public health burden (Etgen et al., 2012; Sarnak, 2013; Heaf, 2017).

The American Journal of Kidney Diseases added to the evolving story of cognitive impairment in kidney disease by measuring mild and severe cognitive impairment hemodialysis and peritoneal dialysis patients, this came to a prevalence of cognitive impairment anywhere from 30 to 70% (Griva et al., 2010).

CKD patients are at higher risk of cognitive decline and even dementia. Investigation of the clinical correlates of cognitive impairment in CKD could potentially result in the identification of treatment targets in order to modify the poor cognitive outcome (Tamura et al., 2016).

Cognitive impairment in CKD is associated with poorer clinical outcomes, including a higher admission rate, a greater duration of hospitalization, more difficulty adhering to

medications, a poorer quality of life and a higher mortality rate (Rodriguez-Angarita et al., 2016).

Patients with CKD have higher levels of serum homocysteine Hcy than subjects without CKD. Homocysteine is primarily transsulfurated in the kidney and deficiency of this renal transsulfuration contributes to elevation of plasma Hcy (Li et al., 2007; Van Guldener et al., 2005).

Homocysteine is derived from the demethylation of the essential amino acid methionine. Remethylation occurs by two main pathways: the first uses folate and vitamin B12 as cofactors, while the second, transsulfuration, uses vitamin B6 as a cofactor (Skovierova et al., 2016).

Homocysteine may affect cognitive function through impairing methylation of myelin sheath or the excitotoxic effect N-methyl-D-aspartate of homocysteine metabolites on glutamate receptors which markedly enhances the vulnerability of neurons to oxidative stress and injury (Kamat et al., 2013) which has emerged as an independent risk factor for several neurodegenerative diseases such as vascular dementia, Alzheimer's disease (AD) and stroke (Zhuo et al., 2011).

Serum homocysteine has been associated with atrophic changes in the brain and is considered a marker for low serum vitamin B12 and folate. Studies have reported raised serum homocysteine, low serum vitamin B12 and low serum folate to