

Effect of Metabolic Acidosis on Immunoregulation in Prevalent Hemodialysis Patients

Thesis

Submitted for Partial Fulfillment of Master degree in Internal Medicine

By

Heba William Adly

MB.B.CH, Faculty Of Medicine, Ain Shams University

Under supervision of

Dr. Fawzia Hassan Ahmed Abo Ali

Professor of Internal Medicine, Allergy and Clinical Immunology Faculty of Medicine - Ain Shams University

Dr. Hossam Moustafa Elkady

Lecturer of Internal Medicine, Allergy and Clinical Immunology Faculty of Medicine, Ain Shams University

Dr. Mohamed Sary Gharib

Lecturer of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2020

Acknowledgment

First and foremost, I feel always indebted to **GOD**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Dr. Fawzia Hassan Ahmed Abo Ali,** Professor of Internal Medicine, Allergy and Clinical Immunology Faculty of Medicine - Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Hossam Moustafa Elkady**, Lecturer of Internal Medicine, Allergy and Clinical Immunology Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Mohamed Sary Gharib**, Lecturer of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance.

Heba William

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	3
Review of Literature	
End Stage Renal Disease (ESRD)	4
Interleukin-10	43
Patients and Methods	73
Results	77
Discussion	88
Summary	94
Conclusion	96
Recommendations	97
References	98
Arabic Summary	

List of Tables

Table No	. Title	Page No.
Table (1):	Stages of CKD of all types	7
Table (2):	Baseline characteristics of the population	
Table (3):	Baseline clinical parameters of study g	group78
Table (4):	Comparison of baseline IL10 levels in population and study group	
Table (5):	Comparison of baseline IL10 le subgroups of patients	
Table (6):	Correlations between serum IL10 le other parameters at baseline	
Table (7):	Multivariate regression analysis of II significantly correlated parameters in correlations	bivariate
Table (8):	Comparison of different parameter before and after correction of racidosis	netabolic
Table (9):	Correlations between change in II change of other parameters	

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Normal renal system	4
Figure (2):	Normal and diseased kidney	
Figure (3):	Etiology of CKD	
Figure (4):	Normal and diabetic kidney glomerul	
Figure (5):	Normal nephron	
Figure (6):	Pathogenesis of CKD	
Figure (7):	Pathophysiologic mechanisms hypertension in chronic kidney diseas	of
Figure (8):	Bone-mineral disease of CKD	25
Figure (9):	Anemia of CKD	27
Figure (10):	Chronic kidney disease	28
Figure (11):	HCO3 reabsorption along the nephro	n30
Figure (12):	Amniogenesis	31
Figure (13):	Treatment options for ESRD	38
Figure (14):	Process of HD	40
Figure (15):	Inflammation progression to fibros	
Figure (16):	Different cytokines excreted by im cells	
Figure (17):	IL-10 family and receptors	46
Figure (18):	Immune cells producing IL-10	47
Figure (19):	The predicted complex structure of with its receptors, IL-10RA and IL-10	
Figure (20):	Transcription factors that co- interleukin-10 expression by CD4+ T and antigen-presenting cells	Cells
Figure (21):	IL-10 receptor complex	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (22):	IL-10 signaling	52
Figure (23):	IL-10 in infection and inflammation	53
Figure (24):	IL-10 and immune cells	55
Figure (25):	Bacteria induce DC II-0 production	57
Figure (26):	IL-10 expression in tumors	60
Figure (27):	IL-10 in SLE	62
Figure (28):	The dual function of IL-10	63
Figure (29):	IL-10 secretion in response to in pathogen	
Figure (30):	IL-10 in viral infection	67
Figure (31):	Comparison of IL10 levels in the group and control group shows significant increase of IL-10 in group compared to control group	highly study
Figure (32):	Correlation between baseline IL1 serum bicarbonate showing ne correlation.	egative
Figure (33):	Comparison between IL10 levels and after correction of metabolic as showing significant decrease of IL-1 acidosis correction	cidosis 0 after
Figure (34):	Correlation between delta IL10 and bicarbonate showing significant necorrelation	egative

List of Abbreviations

Abb.	Full term
ABGs	. Arterial blood gases
	. Angiotensin-converting enzyme inhibitor
	. Acute kidney injury
	. Antineutrophil cytoplasmic antibody
	. Antigen Presenting Cells
	. Angiotensin II receptor blocker
	. Bronchoalveolar lavages
BP	S
	Compensatory anti inflammatory response
	syndrome
CD	·
CK	. Creatinine Kinase
CKD	Chronic kidney disease
	. Computed tomography
	. Cytotoxic T lymphocytes
	. Damage-associated molecular patterns
DCs	-
EAE	. Experimental autoimmune encephalomyelitis
	. Estimated glomerular filtration
	. End stage renal disease
GFR	Glomerular filtration rate
GWAS	. Genome-wide association studies
HD	. Haemodialysis
IBD	Inflammatory bowel disease
IFN	. Interferon
IgA	. Immunoglobulin A
IL	
IQWiG	. Institute for Quality and Efficiency in Health Care

List of Abbreviations Cont...

Abb.	Full term
Jak	Janus kinase
	Kidney Disease Outcomes Quality Initiative
	Kidney transplantation
	Lipopolysaccharides
	Mineral bone disease
	Magnetic resonance imaging
	Multiple sclerosis
	Mycobacterium tuberculosis
	Non-steroidal anti-inflammatory drugs
	Pathogen-associated molecular patterns
	Peripheral blood mononuclear cells
	Peritoneal Dialysis
	. Polymorphonuclear cells
	Pathogen recognition receptors
	Parathyroid hormone
pTreg	Peripherally derived T regulatory
RA	. Rheumatoid Arthritis
RBC	. Red blood cells
RRT	Renal replacement therapy
SLE	. Systemic Lupus Erythtomatosis
SS	. Systemic Sclerosis
	. Signal transducer and activator of
	transcription
T1D	Type 1 diabetes
ТВ	. Tubercle bacillus
Tfh	. Follicular T helper
TGF	. Transforming growth factor
Th	. T helper

List of Abbreviations Cont...

Abb.	Full term
Tregs	Regulatory T cells
UACR	Urinary albumin: creatinine ratio
UC	Ulcerative colitis

Introduction

End stage renal disease (ESRD) is defined as irreversible decline in kidney function that is severe enough to be fatal in the absence of hemodialysis (HD) or transplantation. ESRD is included under stage 5 of the National Kidney Foundation Kidney Disease Outcomes Quality Initiative (KDOQI) classification of chronic kidney disease, where it refers to persons with an estimated glomerular filtration (eGFR) rate less than 15 mL per minute per 1.73 m2 body surface area (*Cheng et al.*, 2018).

Metabolic acidosis is disturbances in the homeostasis of plasma acidity characterized by an increase in the hydrogen ion concentration in the systemic circulation. Acidosis is a common complication of chronic kidney disease (CKD), which can cause patients to lose lean body mass by preventing the activation of adaptive responses that maintain protein stores (*Yan et al., 2017*). Some effects of acidosis include negative nitrogen balance, muscle wasting, protein catabolism, increased corticosteroid, and parathyroid hormone production (*Kraut and Madias, 2011*).

The (KDOQI) recommended maintaining predialysis serum bicarbonate at \geq 22 mEq/L (*National Kidney Foundation*, 2000).

In patients with renal failure, the systemic concentrations of both pro-inflammatory - and anti inflammatory cytokines are

several times higher than concentrations in healthy individuals due to both decreased renal clearance and increased production of cytokines (Esmeralda et al., 2017).

Interleukin 10 (IL-10) is a cytokine with potent antiinflammatory properties that plays a central role in limiting host immune response to pathogens, thereby preventing damage to the host and maintaining normal tissue homeostasis. Dysregulation of IL-10 is associated with enhanced immunopathology in response to infection as well as increased risk for development of many autoimmune diseases (Shankar and Genhong, 2012).

HD results in activation of cytokines, which can induce protein catabolism and promote apoptosis (Michel et al., 2010). Low IL-10 level has been associated with low requirement of EPO (Erythropoeitin) in HD patients (Attia et al., 2010).

High levels of interleukins (ILs) and presence of metabolic acidosis are described as independent risk factors for morbidity and mortality in these patients. Although regular hemodialysis causes decreased levels of mortality in ESRD, it is considered a condition associated with inflammation (Ori et al., 2013).

AIM OF THE WORK

The aim of this study is to evaluate the relationship between IL-10 and serum bicarbonate and metabolic acidosis in prevalent hemodialysis patients and evaluate the effect of correction of metabolic acidosis on IL10 levels.

Chapter 1

END STAGE RENAL DISEASE (ESRD)

Introduction:

The renal system consists of the kidney, ureters, and the urethra. (Fig. 1) The overall function of the system filters approximately 200 liters of fluid a day from renal blood flow which allows for toxins, metabolic waste products, and excess ion to be excreted while keeping essential substances in the blood (Faiz and Ifeanyichukwu, 2019).

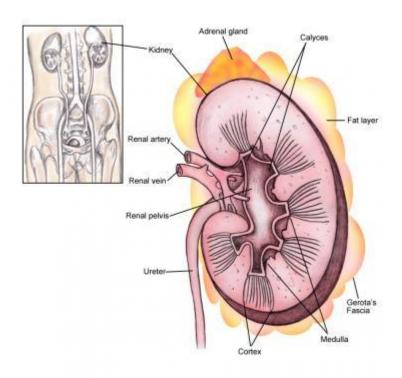


Figure (1): Normal renal system (Charbel et al., 2017).

The kidney regulates plasma osmolarity by modulating the amount of water, solutes, and electrolytes in the blood (Jiatong et al., 2020). It ensures long term acid-base balance (Hamm et al., 2015) and also produces erythropoietin which stimulates the production of red blood cell (Tomokazu et al., 2015). It also produces renin for blood pressure regulation (Matthew et al., 2015) and carries out the conversion of vitamin D to its active form (Antonio and Michal, 2013).

Chronic kidney disease (CKD) is the presence of kidney damage with urinary albumin excretion of over 29 mg/day or decreased kidney function with glomerular filtration rate (GFR) less than 60mL/min/1.73m² for three or more months (*Faiz and* Ifeanyichukwu, 2019). The presence of both of these factors along with abnormalities of kidney structure (Fig. 2) or function for greater than three months signifies CKD. End-stage renal disease, moreover, is defined as a GFR less than 15mL/min (Scott et al., 2018).

The incidence and prevalence of CKD have risen dramatically, partly due to the increasing prevalence of diabetes and hypertension (Mallika et al., 2016). CKD is a significant global public health problem with poor prognosis, it is associated with high rates of morbidity and mortality and elevated health care costs (Carrero et al., 2017).

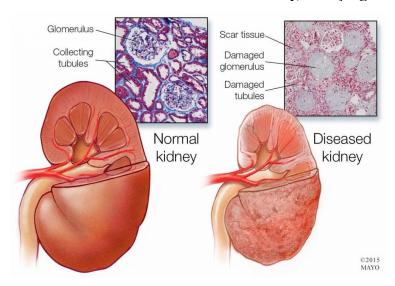


Figure (2): Normal and diseased kidney (Beka, 2018).

Stages of CKD:

The stages of CKD are classified as follows (Table 1)

- Stage 1: Kidney damage with normal or increased GFR (>90 mL/min/1.73 m²)
- Stage 2: Mild reduction in GFR (60-89 mL/min/1.73 m²)
- Stage 3a: Moderate reduction in GFR (45-59 mL/min/1.73 m²)
- Stage 3b: Moderate reduction in GFR (30-44 mL/min/1.73 m²)
- Stage 4: Severe reduction in GFR (15-29 mL/min/1.73 m²)
- Stage 5: Kidney failure (GFR < 15 mL/min/1.73 m² or dialysis)

(KDIGO, 2012)