

Assessment of Magnesium level Among Hemodialysis Patients and Its Relation to Vascular Stiffness

Thesis

Submitted for Partial Fulfilment of Master Degree in Internal Medicine

By **Nouran Abdel Fattah Sayed**

MB.B.CH, Faculty of Medicine, Ain Shams University

Under supervision of

Dr. Mahmoud Mohammed Zaki

Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Dr. Abdel Rahman Nabil Khedr

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Dr. Ashraf Hassan Abdel Mobdy

Lecturer of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University Cairo 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Dr. Mahmoud Mohammed Zaki, Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Dr. Abdel Rahman Nabil Khedr, Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Dr. Ashraf Hassan Abdel Mobdy, Lecturer of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance.

Nouran Abdel Fattah

List of Contents

Title	Page No.
List of Tables	5
List of Figures	7
List of Abbreviations	10
Introduction	1
Aim of the Work	3
Review of Literature	
End Stage Renal Disease	4
Serum Magnesium in Hemodialysis Patients.	10
Vascular Calcification	49
Patients and Methods	79
Results	84
Discussion	110
Summary	123
Conclusion	
Recommendations	129
References	
Arabic Summary	

List of Tables

Table No.	Title Page No.
Table (1): Table (2):	Stages of chronic kidney disease
Table (3):	Shows drug induced magnesium disturbances 32
Table (4):	Showing genetic causes of hypomagnesemia 33
Table (5):	Baseline characteristics of the studied population:
Table (6):	Etiology of ESRD in the studied population: 86
Table (7):	Laboratory data of the studied population: 87
Table (8):	Descriptive analysis of echocardiography findings of the studied population:
Table (9):	Descriptive analysis of carotid duplex findings of the studied population:89
Table (10):	Comparison between group I and group II as regard age, duration of hemodialysis and laboratory data of the studied population:90
Table (11):	Comparison between group I and group II as regard Echocardiography findings:92
Table (12):	Comparison between group I and group II as regard carotid duplex findings:92
Table (13):	Comparison between group 1 and group 2 as regard age, duration of hemodialysis, laboratory data, echocardiography and carotid duplex findings:
Table (14):	Comparison between group A and group B as regard age, duration of hemodialysis, laboratory data, echocardiography and carotid duplex findings:

List of Tables cont...

Table No.	Title	Page No.
Table (15):	Comparison between group III and as regard age, duration of her laboratory data, echocardiography a	nodialysis,
	duplex findings:	99
Table (16):	Correlation between magnesium level duration of hemodialysis, laborate echocardiography and carotid duples	tory data,
Table (17):	Correlation between intimal medial and age, duration of hemodialysis, data, echocardiography and carot	thickness laboratory
	findings:	104
Table (18):	Correlation between aortic wave pul and age, duration of hemodialysis, data and ejection fraction:	laboratory

List of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2):	Normal magnesium balance	nesium
Figure (3): Figure (4):	Magnesium in lung Mechanisms of vascular calcifica CKD	41 tion in
Figure (5):	Clinical consequences of arterial s and vascular calcification	tiffness
Figure (6):	Mechanism of action of new thera for vascular calcification	peutics
Figure (7):	Shows descriptive data of population as regard sex	
Figure (8):	Shows the etiology of ESRD studied population.	in the
Figure (9):	Shows the descriptive analy echocardiographic findings in the population.	sis of studied
Figure (10):	Shows comparison between group group II as regard Hb level	I and
Figure (11):	Shows comparison between group group IV as regard aortic wave velocity	III and pulse
Figure (12):	Shows comparison between group group IV as regard carotid plaques.	III and
Figure (13):	Shows comparison between group group IV as regard intimal thickness.	III and media
Figure (14):	Shows comparison between group group VI as regard age	V and

List of Figures cont...

Fig. No.	Title	Page No.
Figure (15):	Shows comparison between group group VI as regard carotid findings	duplex
Figure (16):	Shows comparison between group group VI as regard parathyroid he level.	V and ormone
Figure (17):	Shows comparison between group group VI as regard carotid intimal thickness.	media
Figure (18):	Shows comparison between the ground and group VIII as regard triglycerides	oup VII serum
Figure (19):	Shows comparison between the groand group VIII as regard ejection fr	oup VII
Figure (20):	Shows comparison between the group VIII as regard aortic pulse velocity	oup VII c wave
Figure (21):	Shows comparison between the group VIII as regard aortic intima media thickness	oup VII c wave
Figure (22):	Shows correlation between mag- level and hemoglobin level	nesium
Figure (23):	Shows correlation between mag- level and LDL level	nesium
Figure (24):	Shows correlation between intimal thickness and age	medial
Figure (25):	Shows correlation between intimal thickness and ejection fraction	medial
Figure (26):	Shows correlation between intimal thickness and aortic wave pulse vel	medial

List of Figures cont...

Fig. No.	Title	Page No.
Figure (27):	Shows correlation between ac pulse velocity and phosphorus le	
Figure (28):	Shows correlation between ac pulse velocity and potassium lev	
Figure (29):	Shows correlation between ac pulse velocity and hemoglobin le	

List of Abbreviations

Abb.	Full term
ACh	Acetylcholine
	. Aminoglycoside antibiotics
	. Augmentation index
	. Alkaline Phosphatase
	. Morphogenetic protein 7
Ca	
	Coronary artery calcification
	. Continuous ambulatory peritoneal dialysis
	. Calcium sensing receptor
CD	
	. Confidence interval
	. Chronic kidney disease
	. Calcineurin inhibitors
CNT	. Connecting tubule
COPD	. Chronic obstructive pulmonary disorder
CPP	. Calciprotein particles
CsA	. Cyclosporin A
CSD	. Cortical spreading depression
CSF	. Cerebrospinal fluid
CT	. Connective tissue
CUA	. Calciphylaxis
CVD	. Cardiovascular disease
CVD	. Cerebrovascular disease
DBP	. Diastolic blood pressure
DCI	. Delayed cerebral ischemia
DM	. Diabetes mellitus

List of Abbreviations cont...

Abb.	Full term
EN	Endothelial cell
	End-stage renal disease
	Forced expiratory volume
	Familial hypomagnesemia with hypercalciuria
riiiino type i	and nephrocalcinosis type I
FVC	Forced vital capacity
GAS6	Growth arrest specific 6 protein
GFR	Glomerular Filtration Rate
HD	Haemodialysis
HDL	High-density lipoprotein
His	Histamine
HPABH4D	Hyperphenyalaninemia and high urinary
	levels of primapterin
IDH	Intradialytic hypotension
IHD	Ischaemic heart disease
IMT	Intima media thickness
IRH	Isolated autosomal recessive hypomagnesemia
KDIGO	Kidney Disease: Improving Global Outcomes
LDL	Low-density lipoprotein
LVH	Left ventricular hypertrophy
MASH-I	Magnesium and Acetylsalicylic acid in
	Subarachnoid Hemorrhage
MEP	Maximal expiratory pressure
Mg	Magnesium
MGP	Matrix Gia-protein
MIP	Maximal inspiratory pressure
MRA	Mineralocorticoid receptor antagonists

List of Abbreviations cont...

Abb.	Full term
NCC	Na-Cl cotransporter
NO	-
OC	
	Pterin-4 α carbinolamine dehydratase 1
PGI2	•
Phos	-
	Proton-pump inhibitors
	Parathyrdoid hormone
PVD	Peripheral vascular disease
PWV	Pulse wave velocity
RCTs	Randomized controlled trials
RR	Relative risk
RRT	Renal replacement therapies
RUNX2	Runt-related transcription factor-2
SAH	Subarachnoid hemorrhage
SBP	Systolic blood pressure
SCI	Spinal cord injury
SHPT	Secondary hyperparathyroidism
SLC41A1/A3	Solute carrier family 41 members 1 and 3
SP	Substance P.
TBI	Traumatic brain injury
TM	Tunica media
TNF-α	Tumor Necrosis Factor-alpha
TRPM6	Transient receptor potential melastatin type 6
VC	Valve calcification
VSMC	Vascular smooth muscle cell

ABSTRACT

Background: The pathogenesis of vascular calcification in Chronic kidney disease (CKD) patients is multifactorial and complicated. It has been proposed that Magnesium (Mg) may be implicated in the process of vascular calcification on various levels.

Aim: This study aims to assess the level of magnesium in hemodialysis patients and its relation to the vascular stiffness.

Patients and methods: 100 prevalent hemodialysis patients were included in the study and they were clinically stable with absence of cardiovascular complications, all patients underwent the following laboratory investigation including complete blood picture, median of magnesium level over 3 months, electrolytes, ipth, lipid profile and radiological investigations including transthoracic echocardiography and carotid duplex.

Results: The studied population was divided into two groups, group I included 68 patients with normal mg level and group II included 32 patients with low mg level. There was statistically significant difference between the two groups as regard hemoglobin level (pvalue=0.033), otherwise there was no statistically significant difference as regard other laboratory and radiological investigations. Then they were divided into another two groups according to the presence of mitral valve calcification (MVC), group III involved 85 patients without MVC and group IV involved 15 patients with MVC. There was statistically significant difference between 2 groups as regard aortic wave pulse velocity (aPWV) with (pvalue=0.002), presence of plaques with (pvalue <0.001) and intimal media thickness with (pvalue<0.001). Another group was divided according to presence of aortic valve calcification (AVC) into two groups, first group V included 39 patients without AVC and second group VI included 61 patients with AVC. There was statistically significant difference between two groups as regard age with (pvalue<0.001), ipth with (pvalue=0.033), presence of plaques with (pvalue=0.048) and intimal media thickness with (pvalue<0.001).

Conclusion: There was high prevalence of vascular calcification among hemodialysis patients which may be related to age and hyperparathyroidism but without statistically significant correlation to Mg level.

Keywords: Hemodialysis, Vascular calcification, Magnesium.

Introduction

Vardiovascular disease (CVD) is the leading cause of mortality among patients with end-stage renal disease (ESRD), and cardiovascular mortality in dialysis patients is 10– 20 times that seen in the general population (USRDS, 2006).

Although non-atherosclerotic factors such as volume overload and left ventricular hypertrophy are important contributors to the high cardiovascular mortality, accelerated atherosclerosis is one of the primary causes of morbidity and mortality in dialysis patients (Soubassi et al., 2006).

Atherosclerotic changes in the carotid artery mirror pathologic events of generalized atherosclerosis. Carotid intima media thickness (IMT), measured non-invasively by ultrasonography, is a well-established index of atherosclerosis and is directly associated with an increased risk for cardiovascular disease in the general population (Faruk et al., 2008).

Hyperphosphatemia, hypercalcemia, and parathyroid hormone (PTH) play a predominant role in the initiation and progression of vascular calcification in patients with ESRD. At the same time, an inverse relationship between magnesium (Mg) and PTH has been described and there is strong evidence suggesting that hypomagnesemia may play a significant role in the development of cardiovascular diseases in the general population (Wei et al., 2006).

1

Magnesium (Mg), the fourth most abundant cation in the human body, plays an essential role in numerous biological processes. The importance of this mineral has been particularly recognized due to its anti-atherosclerotic effect. In the general population, a lower serum Mg level and/or lower dietary Mg intake is associated with an increased incidence hypertension, type 2 diabetes mellitus (DM), metabolic syndrome and CVD including myocardial infarction, stroke, atrial fibrillation and sudden cardiac death (Zhang et al., 2012).

It plays an essential role in a wide range of fundamental cellular reactions and is considered a 'natural calcium antagonist'. Evidence showing that magnesium deficiency promotes inflammation and increases sensitivity to oxidative stress has been accumulating. Atherosclerosis is considered an inflammatory disease and the anti-inflammatory effect of Mg might provide an alternative explanation (Mazur et al., 2007).

Several in vitro studies have shown that Mg deficiency constriction. vascular platelet aggregation, causes inflammation, and oxidative stress, resulting in endothelial cell dysfunction and vascular calcification (Maier, 2012).

direct protective effects of Mg on vascular calcification have also been demonstrated via pathways, including inhibition of hydroxyapatite formation and suppression of trans-differentiation of vascular smooth muscle cells into osteoblast-like cells (Kircelli et al., 2012).