

Effect of Different Surface Coatings on Flexure Strength and Surface Roughness of Glass Ionomer Restorations

Thesis

Submitted to Operative Dentistry Department, Faculty of Dentistry, Ain Shams University, in partial fulfillment of the requirements of the Academic Master Degree in Operative Dentistry.

By

Noha Mohamed Abd El-Kader Anany

B.D.S., Ain Shams University (2013)

Demonstrator, Operative Dentistry Department,

Ain Shams University.

Supervisors

Prof. Dr. Hanan Abdel Aziz Niazi

Professor of Operative Dentistry, Faculty of Dentistry, Ain Shams University

Dr. Aya Elsayed Samaha

Lecturer of Operative Dentistry, Faculty of Dentistry, Ain Shams University

Acknowledgement

I would like to express my deep gratitude to **Dr. Hanan Niazi**, professor of Operative Dentistry, Faculty of Dentistry, Ain Shams University, for her time, patience, supervision, advices and most valuable remarks.

I would also like to genuinely thank **Dr. Aya Elsayed Samaha**, Lecturer of Operative Dentistry, Faculty of Dentistry,
Ain Shams University, for her guidance, support and much appreciated help throughout the course of this work.

With heartfelt gratitude, I would like to thank **Dr.Tarek Mostafa**, Lecturer of Endodontics, Faculty of Dentistry, Ain
Shams University, for his great help with the statistics of this work and for always being there whenever i needed him.

I would like to sincerely thank my dear friends **Dr.Hussam Etman**, **Dr.Yasser Reda** and **Dr.Nader Maher** for their infinite help and support throughout the work.

Last but not least I would like to thank all my friends and colleagues who spared no effort in helping me especially my lifetime friends and sisters **Marwa Ashour** and **Hadeer Nasser**. I would never reach this place without your warm support and encouragement.

Dedication

To my Great Mom

I stand tall because of you. I owe you everything and I would be nothing without you.

To The Soul of my Dad

I kept my word, Rest in peace and be proud of your faithful daughter.

To My Lovely brother

You have always been my backbone, my second father and my closest friend. Thanks amillion for your endless love and support.

List of contents

List of Tables
List of Figures
Introduction
Review of literature
I.Introduction to Glass Ionomer Restorative Material
I.A)Conventional Glass ionomers (CGIs)
I.B)Resin Modified Glass Ionomers (RMGIs)
II. Surface Coatings (SC)
II.A)Effect of surface coating on flexural strength of GIRM
II.B)Effect of surface coating on surface roughness of GIRM
III.Mechanical Tooth Brushing (MTB)
IV.Material Testing
IV.i. Flexural Strength (FS)
IV.ii. Surface Roughness (SR)
Aim of the Study
Materials and Methods
Results
Discussion
Summary and Conclusions
References
Archia Summary

List of Tables

Table No.	<u>Table Title</u>	Page
Table 1:	Material, Composition, Manufacturer and Lot number.	42
Table 2:	Levels of investigation.	44
Table 3:	Interaction between Variables	44
Table 4:	Three-Way ANOVA for the effect of restorative material, surface coating, aging time and their interaction on flexural strength.	61
Table 5:	Means ± Standard Deviations for the effect of surface coating on flexural strength	62
Table 6:	Means \pm Standard Deviations for the effect of surface coating for each material and within each aging time on flexural strength.	64
Table 7:	Three-Way ANOVA for the effect of restorative material, surface coating and aging time on surface roughness.	66
Table 8:	Means ± Standard Deviations for the effect of surface coatings on surface roughness.	67
Table 9:	Means ± Standard Deviations for the effect of surface coating for each material and within each aging time on surface roughness.	69

List of Figures

Figure No.	Figure Title	Page
Figure 1 (a and b):	Split Teflon mold for flexural strength samples; a: Assembled, and b: Disassembled.	45
Figure 2 (a-e):	Preparation steps for flexural strength samples; a: Injecting the material inside the mold, b: The mold slightly overfilled with the material, c: Placing the celluloid strip and glass slide over the mold, d: Top view with the celluloid strip and glass slide in place and e: 1 kg weight applied over the glass slide.	46
Figure 3:	Representative diagram for overlapping curing technique of flexural strength samples.	47
Figure 4:	Disassembling of the Teflon mold.	47
Figure 5 (a and b):	a: Cutting away the flashes using a scalpel blade and b: Final sample for flexural strength testing.	48
Figure 6:	Digital micrometer for measuring width and thickness of flexural strength samples.	48
Figure 7:	Teflon mold for surface roughness samples supplied with cylindrical copper rod.	49
Figure 8 (a-c):	Preparation steps of surface roughness samples; a: Placing the celluloid strip over the injected material, b: Placing the glass slide over the celluloid strip and c: Applying 1 kg weight over the glass slide.	49

Figure 9:	Final sample for surface roughness testing.	50
Figure 10 (a and b):	a: Resin coat application for surface roughness samples, b:Curing the coat for 20 sec.	51
Figure 11 (a-c):	Overlap curing of the resin coat for the flexural strength samples; a: Central initial curing cycle, b: Right-side curing cycle and c: left-side curing cycle.	51
Figure 12:	Application of Petroleum Jelly.	52
Figure 13:	Color coding for the samples.	52
Figure 14:	Plastic cones for samples storage.	52
Figure 15 (a-g):	Tooth brushing simulating device; a: AC motor, b: On/off switch, c:Timer, d: Large pulley, e: Drive belt, f: Horizontal shaft and g: Metallic stainless steel plate.	54
Figure 16 (a-c):	Frontal view for the tooth brushing simulating device; a: 200gm load, b: Brush holder, c: Screw pins and d: Sample holder.	54
Figure 17 (a and b):	A close-up lateral view for the tooth brushing simulating device showing the samples attached to the holder using double face adhesive tape; a: Surface roughness samples and b: Flexural strength samples.	55
Figure 18:	A slurry mixture of dentifrice and distilled water injected over the samples.	55
Figure 19 (a and b):	a: Ultrasonic cleaning device and b: Samples cleaning using the ultrasonic cleaning device.	56
Figure 20:	Universal Testing Machine with testing	57

	assembly in place.	
Figure 21:	Upper jig of testing machine holding third rod centralized in relation to 12mm-bar specimen.	57
Figure 22:	Mechanical profilometer for surface roughness testing.	58
Figure 23:	Bar chart showing the effect of surface coating on flexural strength.	62
Figure 24:	Bar chart showing the effect of surface coating for each restorative material on flexural strength after 24 hr.	64
Figure 25:	Bar chart showing the effect of surface coating for each restorative material on flexural strength after 7 days.	65
Figure 26:	Bar chart showing the effect of surface coatings on surface roughness.	68
Figure 27:	Bar chart showing the effect of surface coating for each restorative material on surface roughness after 24 hr.	70
Figure 28:	Bar chart showing the effect of surface coating for each restorative material on surface roughness after 7 days.	70

Introduction

Glass ionomer restorative materials (GIRM) are widely used in clinical dentistry due to their many advantageous properties, such as fluoride ion release and recharge from external sources, biocompatibility, chemical adhesion to dental tissues, coefficient of thermal expansion similar to that of the dentin and less technique sensitivity with minimal number of steps (1). These positive properties are unfortunately dwarfed by inferior mechanical and physical properties, high surface porosity and poor surface polish compared to resin-based restorative materials (2).

The main constituent of the GIRM is a basic alumino-silicate ion leachable glass powder that interacts with polymeric acid in the presence of water forming a viscous paste. This acid-base reaction results in formation of soluble salts such as calcium polyacrylates which is responsible for the immediate hardening process. These salts are gradually replaced by insoluble aluminum polyacrylate salts, leading to the maximum hardening of the restoration (3).

These restorative materials present some peculiarities that must be respected to gain the maximum benefits from their use. They are very sensitive to moisture especially in the first 24 hours. If prematurely exposed to moisture, they may lose some of their ions, which is clinically perceived as surface wear and reduced translucency (4). Also, their setting reaction is relatively slow which delays the development of their final strength (3).

The fact that GIRM are water-based and set by reaction of watersoluble ions means that they are susceptible to attack by aqueous solutions before they fully set. Therefore, it is clear that incomplete setting reactions and water contamination during the first stage of GIRM setting result in a soft, porous, and fragile cement surface vulnerable to crack formation (1). The presence of surface pores and cracks in the GIRM are considered a drawback of this material, since the previous studies reported that the propagation of these cracks may result in internal fragility and reduced wear resistance, leading to restoration failures (5).

For these reasons many protective surface coatings were developed to protect GIRM from water contamination with the additional advantage of occluding any surface cracks or porosities commonly found in this material (3), possibly resulting in an increased wear resistance of the restorations (6). Consequently; many companies began to launch different materials recommending their use as a surface varnish for their GIRM products claiming that they will provide the highest wear resistance and hardness (7). But, for economic reasons, other alternatives showed up in the dental field. Literature has proved that some of these alternatives lack biocompatibility and therefore their use was not recommended (7). While others started to gain popularity and became trendy in the dental practice (8).

One of these popular materials is petroleum jelly which has been commonly used by clinicians as a surface coat due to its reasonable price and promising results in enhancing different mechanical properties of the GIRM restorations (9). Other practitioners chose to use different bonding systems owing to their higher retentive features compared to petroleum jelly. This drew the attention of many researchers to conduct studies aiming to test their effect on the overall mechanical and physical properties of GIRM's (9,10).

Through the continuous attempts of improving the mechanical and physical properties of glass ionomer restorations, it was found that flexure strength has a great impact on the durability of the restoration against the biological and mechanical challenges of the oral cavity (11). Literature has proved that flexure strength of GIRM increases gradually during the setting reaction and reaches its highest value when the reaction is complete, but this might be affected differently by different surface coatings (8,11).

As important; the increased surface roughness of GIRM might result in rapid stain accumulation (12), faster colonization of the surface and faster maturation of plaque, thereby increasing the risk of recurrent caries (13). It can also increase the wear rate resulting in poor optical properties of the restorations (14).

Therefore; this study was conducted to spot the light on how some materials commonly used as a GIRM surface coat affected the flexure strength and surface roughness of the glass ionomer restorations and thereby enhance their mechanical and physical properties.