

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Evaluation of tendoAchilles Lesions by (MRI)

Chesis

A Thesis Submitted For Partial Fulfilment Of Master's Degree In Radiology

Ву Mohamed AbdElaziz Yehia Rabeai

M.B.B.CH. - Ain Shams University

Supervised by

Prof. Dr. Maha Mohamed Abd Elraouf

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Dr. Mennatallah Hatem Shalaby

Assistant Professor of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Faculty of Medicine
Ain Shams University
2020

The vision for this thesis could only become a reality today because of the kind help and support of many; I would like to take the opportunity to extend my gratitude to them all.

First and foremost, all praise is to ATTAM Almighty for his daily blessings, beyond count or description, and beyond all attempts of thanks and gratitude.

For their relentless and continuous guidance, I am grateful to my supervisors. Their support and luminous feedback provided the backbone of this thesis.

I wish to express my deepest gratitude to **Prof. Dr. Maha**Mohamed Abd Elraouf professor of Radiology department, Faculty of

Medicine, Ain Shams University, for her invaluable mentorship and for his

unremitting leadership, evident at every step of this work. It has been an honor to

complete this thesis under his direction.

Im deeply indebted to Ass. Prof Dr. Mennatallah Hatem Shalaby Assistant Professor of Radiology department, Faculty of Medicine, Ain Shams University, for her priceless scientific assistance and the invaluable effort he provided during his supervision of this work.

My heartiest gratitude goes, of course, to my mother, always paving the path before me, never ceasing to believe in me. My past and my future are shaped by the warmth of your support.

My thanks also go to my brothers, my friends and my colleagues for their continuous support throughout my life.

Finally, I humbly extend my thanks to the patients who participated in this research, my department and to the great institution of Ain Shams University.

LIST OF CONTENTS

Title	Page No.
List of Contents	i
List of Tables	i
List of Figures	ii
List of Abbreviations	v
Introduction	1
Aim of the work	4
Review of Literature	5
Etiology	5
 Anatomy and Different Imaging Modalities in Ac Tendon Injuries 	
Role of MRI in Achilles Tendon Injuries	24
PATIENTS and Methods	40
Results	44
Illustrative cases	58
Discussion	86
Limitations	96
Summary and Conclusion	97
References	100
الملخص الع بي	1

LIST OF TABLES

Table No. Title Page No.	
Table (1): Parameters for MRI of the Achilles tendon	
Table (3): Distribution of Evaluation of tendoAchilles lesions cases according to their demographic data regarding gender and age (n=40)	44
Table (4): Distribution of Evaluation of tendo achilles lesions cases according to their MRI finding in tendon Achilles pathology regarding Partial thickness tear, Full thickness tear, Chronic tear of tendoachilles, Tendenosis, Paratendenitis, Bursitis, Insertional tendinitis, Haguland syndrome and Avulsion (n=40)	46
Table (5): Distribution of Evaluation of tendoachilles lesions cases according to their MRI features of tendinopathy regarding Altered signal intensity of Achilles tendon in T2, Increased T1 signal intensity of tendon substance, Loss of concavity (axial), thickening of Achilles tendon (sagittal) and Areas of altered signal intensity in preachilles fat pad (n=40)	46
Table (6): Distribution of Evaluation of tendoachilles lesions cases according to their MRI features of partial thickness tear regarding heterogenous signal intensity in the substance of the tendon, focal discontinuity of the fibers of the tendon, subcutaneous edema, area of abnormal signal intensity in kager's fat and intratendinous hemorrhage (n=11).	48
Table (7): Distribution of Evaluation of tendoachilles lesions cases according to their MRI features of full thickness tear regarding full thickness disruption of the tendon fibers and hematoma seen within the tendon gap (n=12)	50
Table (8): Relation between sex and tendon Achilles pathology in evaluation of tendo achilles lesions cases (n=40)	53
Table (9): Relation between age category and tendon Achilles pathology in evaluation of tendo achilles lesions cases (n=40).	54
Table (10): Comparison between clinical findings and MRI findings	55
Table (11): Diagnostic accuracy of clinical in comparison to MRI results as a gold standard	57

i

LIST OF FIGURES

Figure No.	Title	Page No.	
	nsertion site	with chronic posterior indicative of chronic	insertional
Fig. (2): Normal Achilles tend			
Fig. (3): (A-B). Normal Achil			
weighted sagittal images show			
signal in its distal segment (arr			
short TE sequence	-		
Fig. (4): Lateral radiograph o			
method for diagnos	sing Haglund'	s deformity	17
Fig. (5) :: A The normal anatom			
B White arrows mark the boun		_	
proximal border of the calcane		-	
a fibrillar homogenous echo pa	•		
Fig. (6): A 57-year-old			
		opathy. Transverse so	•
* * *		wn) demonstrating ne	•
		so the reduced echoger	•
_		consistent with tendinor	-
Fig. (7): A 31-year-old m	_		
Fig. (8): A 35-year-old male		athy	
		g thickening of the	
Fig. (9): A and B) Longitud			
showed abnormally hypoech		*	
Fig. (10): A. Paratenonitis. 29			,
		B. Paratenonitis. Same	
		saturation shows thick	
	-	hilles tendinosis (long	-
Fig. (11): Tendinosis. A 25-y			
5 , ,		gion. MR SE T1W sa	•
	_	deformity of the distal	
the left Achilles ter	ndon (arrows)	with areas of hyperinte	nse signals30
Fig. (12): Insertional tendini	tis. A 30-yea	ar-old male marathon	runner with
unilateral tenderne	ss over the A	Achilles tendon insertion	on. The pain
		<u> </u>	
Fig. (13): A 34-year-old male			
		ng insertional Achilles t	
		laglund's deformity (H)	
Fig. (14): Sagittal T1 of the a			
posterior aspect of	the calcaneus	due to retrocalcaneal b	ursitis35

Fig.	(15):	Haglund's disease .MR SE T2W sagittal image with fat saturation	
		displays excessive fluid in the retrocalcaneal bursa consistent with	
		bursitis (arrow)	36
Fig.	(16): .	Achilles tendon tear. A 26-year-old football player with acute pain	
		over the Achilles.	38
Fig.	(17):	Pie chart distribution of Evaluation of tendoAchilles lesions cases	
		according to their demographic data regarding gender	.45
Fig.	(18):	Bar chart distribution of Evaluation of tendoachilles lesions cases	
Ü	, ,	according to their demographic data regarding age (years)	.45
Fig.	(19):	Bar chart distribution of Evaluation of tendo achilles lesions cases	
8	()	according to their MRI finding in tendon Achilles pathology	.47
Fig.	(20):	Bar chart distribution of Evaluation of tendoachilles lesions cases	
5'	(=0).	according to their MRI features of tendinopathy	49
Fio	(21)· P	ie chart distribution of Evaluation of tendoachilles lesions cases according	17
1 16.	(21).1	to their MRI features of partial thickness tear.	51
Fig	(22).	Pie chart distribution of Evaluation of tendoachilles lesions cases	
rig.	(22).	according to their MRI features of full thickness tear.	52
Fig	(23).	Bar chart relation between sex and tendon Achilles pathology in	.52
rig.	(23).	evaluation of tendo achilles lesions cases.	53
Fig	(24).	Bar chart relation between age category and tendon Achilles	
rig.	(44).	pathology in evaluation of tendo achilles lesions cases	51
Fig	(25). I	Bar chart between clinical findings and MRI findings.	
_		MRI of the ankle sagittal T2 WI (A) and STIR (B) showing	50
rig.	(20).	thickened Achilles tendon, fusiform shape and areas of high	
		signal within the tendon	
Fig.	(27): 1	MRI of the ankle sagittal T1 WI (A), sagittal STIR (C) and axial	
		T1(B) showing focal internal high signal seen at the insertion	
		site of the Achilles tendon	.61
Fig.	(28):	MRI of the right ankle sagittal STIR (A) ,sagittal T2 (B) and	
		axialT1 (C) showing focal internal bright signal seen at the	
		insertion site of the Achilles tendon with related minimal amount	
		of fluid related calcaneal bone	.61
Fig.	(29):	MRI of the ankle sagittal T1WI(A) and sagittal T2 WI (B)	
		showing rupture of the Achilles tendon at its insertion at	
		posterior aspect of calcaneus bone with retraction gap measures	
		about 2.5 cm with reactive bone marrow edema involving the	
		calcaneus bone and surrounding soft tissue edema	.63
Fig.	(30): I	MRI of the ankle sagittal T2 WI (A), sagittal STIR (B) and axial	
		STIR(C) showing thickened the Achilles tendon with an	
		intrasubstance abnormal signal intensity partially disrupting its	
		inner fibers of partial intrasubstance tear, associated with retro-	
		calcaneal fluid signal	67
Fig.	(31):	MRI of the ankle axial STIR (A) and sagittal T2 (B) showing	
		complete thickness tear of the Achilles tendon about 6 cm above	
		postero-superior aspect of calcaneus bone with retraction gap	
		measures about 1.2 cm the tear is seen surround by edema and	
		fluid collection.	.69

Fig. (32): MRI of the ankle axial T2 WI (A), sagittal STIR(B) and axial	
STIR (C) showing abnormal signal intensity near myotendinous	
junction of the Achilles tendon with residual intact low signal	
intensity of its fibers	.71
Fig. (33): MRI of the ankle axial T2WI (A) and sagittal STIR (B) showing	
areas of high signal surround AT paratendenosis	.73
Fig. (34): MRI of the ankle sagittal T2WI (A), sagittal STIR (B) and	
axialT2WI (C)showing thickened Achilles tendon with areas of	
high signal denoting full tear	.75
Fig. (35): MRI of the ankle sagittal STIR (A) and sagittal PDW (B) showed	
retro insertional thickening of the Achilles tendon	.77
Fig. (36): MRI of ankle sagittal STIR(A) showed tendo Achilles with increase	
signal of kager's pad of fat and thickening of Achilles tendon. MRI	
of the ankle thickening of Achilles tendon axial T2 (B) loss of	
concavity showed tendo Achilles with high signal intenisty	.79
Fig. (37): MRI of the ankle sagittal T2 WI and axial STIR showing	
complete thickness tear of the Achilles tendon with retraction	
gap measures about 2.2 cm the tear is seen surround by edema	
and fluid collection	.81
Fig. (38): MRI of the ankle sagittal T2 WI (A), axial STIR (B) and sagittal	
STIR (C) showing complete thickness tear of the Achilles tendon	
with retraction gap measures about 2.2 cm the tear is seen	
surround by edema and fluid collection	.83
Fig. (39): MRI of the ankle sagittal T2WI (A) and STIR (B) showing complete	
thickness tear of the tendo Achilles with retraction gap measures	
about 4 cm, the tear gap is seen filled with fluid collection	.85

LIST OF ABBREVIATIONS

Abb.		Full Term
AT	:	Achilles Tendon
GE	:	Gradient Echo
MRI	:	Magnetic Resonance Imaging
SD	:	Standard Deviation
SE	:	spin echo
STIR	:	Short Tau Inversion Recovery
SPSS	:	Statistical package for social sciences
SD	:	Standard deviation
T1WI	:	T1 Weighted Image
T2WI	:	T2 Weighted Image
PD	:	Proton density
P-value	:	Probability value

The AT is the thickest and strongest tendon in the human body. It is 12-15cm long, it originates from the aponeurosis of the soleus ,medial and lateral gastrocnemius muscle (triceps surae) and is inserted into the posterior calcaneal tuberosity. It is the major planter flexor of the foot and contributes to the maintenance of the upright position (*Gervsio et al., 2014*). Gastrocnemius and Soleus muscles of the calf are conjoined by AT and attaches them to the calcaneus. The AT is the thickest tendon of the Human body, enclosed by Fascia and is protruding behind the bone; the gap being filled by an areolar and adipose tissue (*Sahi et al., 2018*).

Introduction

Disorders of AT are common health problem among middle-aged active people. Due to increasing sport activities in the general population, as the number of abuse injuries has elevated. Tendon disorders represent 30–50% of all sports related injuries. There is still a lack of knowledge about the etiology and pathogenesis of these injuries, despite its high occurrence (*Borg et al., 2016*).

AT injuries: may be classified as insertional (25%), non-insertional (75%). Insertional injuries include insertional tendinosis may be associated with: Haglund deformity,

enthesopathy, inflammatory arthropathy, Haglund syndrome. Non-insertional injuries include diffuse acute and chronic paratendonitis, tendinosis/tendinopathy including hypoxic degenerative, mucoid, lipoid, and calcifying, rupture/tear may be partial or complete (*Borg et al., 2016*).

Multiple imaging modalities have been used to diagnose AT injuries, as plain radiography, (MRI), and ultrasound. Each modality has its own advantages and disadvantages. MRI & US have been widely used to confirm the diagnosis of AT injuries (*Ibrahim and Elsaeed*, 2013).

MRI has excellent contrast resolution for assessment of the AT, contrast injection usually gives no additional information and plain MRI is good enough for assessment (*Tam and Lui*, 2017).

Both US and MRI scans have traditionally been considered to have same accuracy in the diagnosis of Achilles tendinopathy. Few studies have compared ultrasound with MRI in the diagnosis of Achilles tendinopathy. Early studies seem to indicate that MRI scans are better for characterizing degeneration in the AT. However, later research has shown equal or better accuracy with ultra-sound when compared with MRI scans in the detection of tendinopathy. Of note, grey scale ultrasound was found to be more sensitive, whereas color Doppler ultrasound had higher correlation

with patient's symptoms. We recommend ultrasound as it is generally more cost-effective (*Pearce and Tan, 2016*).

MRI is an excellent technique for those cases where the diagnosis is uncertain; it is the most suitable for assessment of bone and soft tissue for persistent pain following injury. Owing to its multiplanar imaging capabilities and excellent soft tissue contrast characteristics, MRI is a useful modality for imaging the AT (*Wijesekera et al.*, 2011).

Aim of the work \llbracket

AIM OF THE WORK

The aim of this study is to evaluate the role of (MRI) in the diagnosis of AT disorders.