

HYBRID WIND SOLAR GENERATING SYSTEM WITH FLYWHEEL STORAGE SYSTEM

By

Eng. Nermen Mohamed Yehia Abd-El-Rahman

A thesis submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of **MASTER OF SCIENCE**

in Electrical Power and Machines Department

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2020

HYBRID WIND SOLAR GENERATING SYSTEM WITH FLYWHEEL STORAGE SYSTEM

By
Eng. Nermen Mohamed Yehia Abd-El-Rahman

A thesis submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electrical Power and Machines Department

Under supervision of

Prof. Ahmed Mohamed Ibrahim Dr. Haitham Mahmoud Yassin

Electrical Power Engineering Department Faculty of Engineering, Cairo University

Electrical Power Engineering Department Faculty of Engineering, Cairo University

Dr. Mohamed Hamdy Mohamed

Electrical Power Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT 2020

HYBRID WIND SOLAR GENERATING SYSTEM WITH FLYWHEEL STORAGE SYSTEM

By

Eng. Nermen Mohamed Yehia Abd-El-Rahman

A thesis submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

Electrical Power and Machines Department

Approved by the

Examining Committee:	
Prof. Ahmed Mohamed Ibrahim	Thesis Main Advisor
Prof. Mohamed Salah Elsobki	Internal Examiner
Prof. Said Wahsh	External Examiner

FACULTY OF ENGINEERING CAIRO UNIVERSITY GIZA, EGYPT

Engineer: Nermen Mohamed Yehia Abd El-Rahman

Date of Birth: 19/5/1979 **Nationality:** Egyptian

E-mail: nermen.yehia@hotmail.com

Phone.: 01017010128

Address: 8062,Al-Bayh st.,Mokattam

Registration Date: 1 / 10 / 2014

Awarding Date: /

Degree: Master Of Science

Department: Electric power and machines Engineering

Supervisors: Prof. Dr. Ahmed Mohamed Ibrahim

Dr. Haytham Mahmoud Yassin Dr.Mohamed Hamdy Mohamed

Examiners: Prof. Dr. Ahmed Mohamed Ibrahim (Thesis Main Advisor)

Prof. Dr. Mohamed Salah Elsobki (Internal examiner)

Prof. Dr. Said Wahsh (External examiner)

Electronics Research Institute

Title of Thesis:

HYBRID WIND SOLAR GENERATING SYSTEM WITH FLYWHEEL STORAGE SYSTEM

Key Words:

wind generated power systems, energy storage system using flywheel, tracking the point of power, optimal sizing, renewable energy

Summary:

Energy Storage System (ESS) integrated with the wind systems can drastically smooth the intermittent generation through the storage of energy that can be used during periods of low generation and the energy generated at the end of the night or at the beginning of tomorrow (when demand is extremely low), it can also be stored to be dispatched during peak demand hours when wind production is much lower. The Flywheel Energy Storage Systems (FESSs), act as mechanical batteries, can store mechanical energy and exchange it to electricity through a bi-directional converter and an electric machine. FESSs have a large number of charge and discharge cycles that make them perfect for the integration of wind systems. They can significantly improve the mitigation of power fluctuations by using (MATLAB/SIMULINK). The main objective in this thesis is to develop a comprehensive control philosophy for enhancing the output voltage to introduce power smoothing method using energy storage system which is Flywheel, and to develop optimal sizing for flywheel energy storage system using General Algebraic Modeling Software (Gams).

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name:	Date:
Signature:	

Acknowledgments

Thanks ALLAH, You give me the ability to learn, understand, and work.

I would like to express my thanks to my supervisor **Prof. Dr. Ahmed Mohamed Ibrahim**, for his encouragement, helpful advice and the time he offered me during research period.

I would like deeply to express my sincere thanks and heartiest gratitude to my supervisor **Dr.Haytham Mahmoud Yassin**, for his great faithful supervision, his guidance and encouragement during all stages of this research.

I would like deeply to express my sincere thanks and heartiest gratitude to my supervisor **Dr. Mohamed Hamdy** Mohamed, for his great faithful supervision, his guidance and encouragement during all stages of this research.

I'm grateful to the examiners Prof. Dr. **Mohamed Salah Elsobki** and Prof. Dr. **Said Wahsh** for their constructive suggestions and valuable comments, which improve the quality of the thesis.

I am so grateful to my parents, brother and daughter for their continuous support and encouragement through my whole life.

Table of Contents

	imer	
	owledgments	
	f Tables f Figures	
	f Symbols and Abbreviations	
	act	
1 (HAPTER 1: INTRODUCTION	1
1.1	Introduction	1
1.2	Overview of Wind Energy System	2
1.3	Overview of Solar Energy	4
	.3.1 First-Generation: Crystalline Silicon	4
	.3.2 Second-Generation: Thin-Film	5
	.3.3 Third-Generation PV technology	6
1.4	Energy Storage Systems Applications with Renewable Generation	6
1.5	Problem Statement and Research Motivation	8
1.6	Thesis Objectives	9
1.7	Organization of the Thesis	10
2	CHAPTER 2: MICRO GRID	12
2.1	Introduction	12
2.2	General Information Regarding Microgrid	12
2.3	Grid Structure and Components	14
2.4	Technical Challenges on Microgrid	15
2.5	Power Converters Used in Microgrid	16
2.6	Classification of Microgrids	17
,	.6.1 AC Microgrid	17
,	.6.2 DC Microgrid	17
2.7	Overview of DC Microgrids	18

2.7.1 Monopolar DC link	20
2.7.2 Bipolar DC link	20
2.7.3 Homopolar DC link	21
2.8 Summary:	22
3 CHAPTER 3: ENERGY STORAGE SYSTEMS	23
3.1 Introduction	23
3.2 Energy Storage Systems	23
3.2.1 Pumped Hydro Storage (PHS	23
3.2.2 Compressed Air Energy Storage (CAES)	24
3.2.3 Battery Energy Storage (BES)	24
3.2.4 Flow Batteries	25
3.2.5 Flywheels	26
3.2.6 Super Capacitors	26
3.2.7 Superconducting Magnetic Energy Storage (SMES)	26
3.3 Flywheel Energy Storage System	27
3.3.1 Theory of Operation	27
3.3.2 Flywheel Energy Storage Systems Configuration	27
3.4 Merits of Wind and Flywheel Energy Systems Integration	33
3.5 Summary:	33
4 CHAPTER 4: MODELING OF HYBRID PV-WIND ENERGY SYSTEM INTEGRATED WITH FLYWHEEL SYSTEM	34
4.1 Introduction	
4.2 Detailed Modeling of DGs	34
4.2.1 PV Array Model	34
4.2.2 Direct-Drive PMSG Wind System Model	35
4.2.2.1 Aerodynamic Model	35

4.2	2.2.2 Two Mass Drive Train Model	38
4.2	2.2.3 Permanent Magnet Synchronous Generator (PMSG) Model	38
4.2	2.3 Bi-directional Power Electronic Converter Model	40
4.2	2.3.1 Machine Side Converter Model	42
4.2	2.3.2 Grid Side Converter Model	43
4.2	2.3.3 DC-link Model	43
4.2	2.3.4 Grid Model	43
4.2	2.3.5 Flywheel Model	45
4.3	Flywheel Different Topologies	45
4.4	Simulation Results	48
4.5	Summary	54
5 CI	HAPTER 5: OPTIMAL SIZING OF ENERGY STORAGE SYSTEM	55
5.1	Introduction	55
5.2	General Algebraic Modeling Software (GAMS)	55
5.3	Characteristics of Energy Storage Techniques	56
5.4	Operation Algorithm	57
5.5	The Cost Objective Function	58
5.6	Results and Discussions	58
5.7	Simulation	59
5.7	7.1 Scenario One	62
5.7		
CHAP	TER 6: CONCLUSIONS AND FUTURE WORK	67
6.1	Conclusions	67
6.2	Recommendations for Future Work	
DEFFI	RENCES	60

List of Tables

Table 1: Applications of different energy storage systems in power systems	. 8
Table 21 summarizes the common converters used in microgrid's in terms of applications,	
control methods, and topologies [21].16	
Table 2: Advantages and Disadvantages of AC and DC microgrid	19
Table 31: Comparison between different materials used for flywheel disks [42] 29	
Table 3 2: Comparison between different machine types for FESS Application [42]	30
Table 3: Advantages and disadvantages of common electrical machines in FESS [47, 48, 49]	30
Table3 4: Comparison between high and low speed FESS [42]	32

List of Figures

Figure 1.1: Total world installed wind capacity according to World Wind Energy Association (WWEA)	1
Figure 1.2: Growth in wind energy turbines	3
Figure 1.3: Mono-Crystalline silicon	5
Figure 1.4: Poly - Crystalline cell and module	5
Figure 1.5: Energy storage systems classification according to their objectives [5]	7
Figure 2.1: A Micro grid structure [18]	15
Figure 2.2: AC microgrid architecture	18
Figure 2.3: DC microgrid architecture	19
Figure 2.4: DC link configurations based on monopolar type	20
Figure 2.5: DC link configurations based on bipolar type	21
Figure 2.6: DC link configurations based on homopolar type	21
Figure 3.1: Schematic diagram of Compressed Air Energy Storage System (CAES)	24
Figure 3.2: Battery Energy Storage System (BESS) [24]	25
Figure 3.3: Flow Battery Energy Storage System (FBESS) [24]	26
Figure 3.4: Schematic diagram of Flywheel Energy Storage System Components [45]	28
Figure 3.5: Various shapes of flywheel disks used in flywheel energy storage systems [46]	29
Figure 4.1: Electrical Equivalent of PV Cell	34
Figure 4.2: Subsystems of Direct-Drive PMSG Wind turbine system [2]	35
Figure 4.3: Wind Turbine Aerodynamic model [2]	36
Figure 4.4: Power conversion coefficient versus tip speed ratio $(C_p - \lambda)$ curve for different pitc angle [2]	
Figure 4.5: Wind turbine power characteristic (P_t _ $-\omega_t$) curve with Maximum Power Point Tracking [2]	37

Figure 4.6: Two Mass model of the drive train [2]	38
Figure 4.7: PMSG equivalent circuit in the dq reference frame [2]	39
Figure 4.8: Back-To-Back voltage source Converter	40
Figure 4.9: Active and reactive power transfer between the generator and the MSC, a) Equivicircuit diagram, b) Phasor diagram.	
Figure 4.10: Back-to-back converter model	42
Figure 4.11: Space vector diagram of the grid three phase voltage	44
Figure 4.12: Basic FESS [63]	46
Figure 4.13: Different configurations of FESS with wind generator through DC-link [63]	46
Figure 4.14 :Rotor speed curves for Wind Turbine and FEES system	48
Figure 4.15: Active power and Power at Common Coupling (PCC) during the simulation	49
Figure 4.16: Reactive power output	50
Figure 4.17:FESS stored energy	50
Figure 4.18:D.C. Link voltage	51
Figure 4.19: q-d-components of the PMSG current	52
Figure 4.20: q-d-components of the FESS current	53
Figure 4.21: q-d-components of the grid current	54
Figure 5.1: Diagrammatic detailed representation of the overall proposed problem formulation	on 56
Figure 5.2: Hourly Solar radiation [67]	60
Figure 5.3: Hourly Wind Speed [67]	61
Figure 5.4: Daily Load Profile [67]	62
Figure 5.5: Time vs State of charge	63
Figure 5.6: Time vs State of charge	64
Figure 5.7: Time vs Power to grid	65
Figure 5.8: Time vs Power from grid.	66

List of Symbols and Abbreviations

ACAlternative Current **AMI** Modulation Index of The Generator Voltage Input DC **Direct Current DER** Distributed Energy Resource **DFIG Doubly Feed Induction Generator** DG **Distributed Generation** DLC Direct Load Control DSM **Demand Side Management ESS Energy Storage System FSWT** Fixed Speed Wind Turbine HVDC High Voltage Distributed System I Direct Incidenec Solar Radiation I 0 Reverse Bias Current IG **Induction Generator** ΙK **Short Circuit Current** IM **Induction Machine** LV Low-Voltage LVDS Low Voltage Distributed System MG Micro Grid **PCC** Point of Common Coupling Pm Mechanical Power Permanent Magnet Synchronous Generator **PMSG** PMGM Permanent Magnet Synchronous Machine Pt The Extracted Mechanical Power From The Wind, W PVPhotovoltaic **PWM** Pulse Width Modulation RES Renewable Energy Sources Rs Stator Resistance

The Magnitude of The MSC Output Voltage, V

Vmsc

VRM Variable Reluctance Machine

Vs The Magnitude of The Generator Terminal Voltage, V

VSI Voltage Source Inverter

VSWG Variable Speed Wind Generator

VSWT Variable Speed Wind Turbine

Xs The Generator Equivalent Reactance, Ω

ami Phase Index of The Generator Voltage Input

 δ The Phase Angle Between the Two Voltages, Rad

ρ The Air Density, Kg/m3

ωi The Angular Electrical Frequency of The Generator

Abstract

The interest in renewable electricity sources is growing continuously. Today, wind energy is a major player and controller of the global energy market. According to the World Wind Energy Association (WWEA), global wind capacity reached 539,291 GW at the end of 2018, of which 52,552 GW were added in 2018, which represents a growth rate of 10.8%.

Wind turbines installed worldwide at the end of 2018 can generate around 5% of global electricity demand. Wind energy has a vital role in electricity systems because it is a clean source and has a low operating cost. However, the penetration of wind energy enforces completely different operational challenges because of uncertainty and intermittent nature. flexible energy resources, like energy storage systems and demand management, are the most solutions to compensate for the energy misalignment associated with the uncertainty and irregularity of wind energy.

In general, the main objective is to increase the power of wind systems. However, the increase in the interconnection of these wind resources depends on several factors and must be monitored and controlled. Wind energy, like the different renewable energy sources, has a stochastic and random character. Changes in the wind speed profile, while trying to collect maximum power, will result in the injection of a fluctuating power profile in the electrical network, which represents a serious threat to the stability of the electrical system.

Energy Storage System (ESS) integrated with the wind systems can drastically smooth the intermittent generation through the storage of energy that can be used during periods of low generation and the energy generated at the end of the night or at the beginning of tomorrow (when demand is extremely low), it can also be stored to be dispatched during peak demand hours when wind production is much lower.

The Flywheel Energy Storage Systems (FESSs), act as mechanical batteries, can store mechanical energy and exchange it to electricity through a bi-directional converter and an electric machine. FESSs have a large number of charge and discharge cycles that make them perfect for the integration of wind systems. They can significantly improve the mitigation of power fluctuations. The main objective in this thesis is to develop a comprehensive control philosophy for enhancing the output voltage to introduce power smoothing method using energy storage system which is Flywheel, and to develop optimal sizing for flywheel energy storage system using General Algebraic Modeling Software (Gams).

Flywheel is the main subject in this research. ESS is taken into consideration as an effective tool to improve the flexibility and controllability not only of a specific wind farm, but also of the entire grid to match the load profile. Main objectives for using ESS are to smooth the fluctuations and shift the renewable generation to match the load.

In this thesis, A model of DGs based on MATLAB/SIMULINK is developed for a more realistic analytical verification. FESS is integrated with both photovoltaic and permanent magnet synchronous generator (PMSG) based wind energy conversion system. A mathematical model for