

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

Pectoral Nerves Blocks for Post-operative Analgesia after Breast Cancer Surgery

Thesis

Submitted For Partial Fulfillment of Master Degree in **Anesthesia**

By

Omar Fathy Shatoury Younis

M.B.B.CH. (2011), Sohag University

Supervised By

Prof. Dr. Mostafa Kamel Fouad

Professor of Anesthesia, ICU and Pain Management at ASU Faculty of Medicine, Ain Shams University

Prof. Dr. Jehan Abdelhalim Gomaa

Assistant Professor of Anesthesia, ICU and Pain Management at ASU Faculty of Medicine, Ain Shams University

Prof. Dr. Raham Hasan Mostafa

Assistant Professor of Anesthesia, ICU and Pain Management at ASU Faculty of Medicine, Ain Shams University

Faculty of Medicine, Ain Shams University

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I'll never forget, how co-operative was **Prof. Dr.**Mostafa Kamel Found, Prof. of Anesthesia, Intensive

Care and Pain Management, Ain Shams University, also
he was encouraging all the time. It is honourable to be
supervised by him.

I would like to express my great thanks and deepest gratitude to **Prof. Dr. Jehan Abdelhalim Gomaa**, Prof. of Anesthesia, ICU, and Pain management, Ain Shams University for her valuable advice, guidance and constructive criticism.

I am greatly thankful to **Prof. Dr. Raham Hasan Mostafa**, Lecturer of Anesthesia, ICU and Pain
Management, Ain Shams University, for her continuous
support to achieve a good output.

I am thankful to **Dr. Ahmed Mohammed Hasan**Consultant of Anesthesia and ICU, Sohage Cancer
Institute for helping me to make this work.

Omar Fathy Shatoury Younis

Tist of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1 -
Aim of the Work	25
Patients and Methods	26
Results	35
Discussion	47
Summary and Conclusion	54
References	58
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
AAGBI	Association of Anesthetists of Great Britian and Irland
ASA	American Society of Anesthesiologists
<i>BMI</i>	Body Mass Index
CNS	Central nervous system
DVT	Deep vein thrombosis
<i>IASP</i>	International Association for study of pain
<i>LA</i>	Local anesthetic
<i>LD</i>	Latissumus dorsi
NRS	Numeric rating scale
<i>PACU</i>	Post anesthetic care unit
Pecs	Pectoral nerve block
<i>PMm</i>	Pectoralis major muscle
<i>Pmm</i>	Pectoralis minor muscle
<i>PONV</i>	Post operative nausea and vomiting
<i>SAm</i>	Serratus anterior muscle
<i>SIPB</i>	Serratus intercostal plane block
<i>TPVB</i>	Thoracic paravertebral block
VAS	Visual analogue scale

Tist of Tables

Table No.	Title	Page N	lo.
Table 1: Table 2:	Demographic data and duration of su Number of patients needed intra-ope fentanyl	erative	
Table 3:	Total amount of Fentanyl dose used (mic)	37
Table 4:	Number of patients needed Nalbu	uphine	
Table 5:	post operative	used uphine	
	needed postoperative / mins		39
Table 6:	Comparison between the two s groups as regarding heart rate	intra-	40
T 11 =	operative		40
Table 7:	Comparison between the two s groups as regarding heart rate operative	post-	41
Table 8:	Comparison between the two s groups as regarding Mean ABP	tudied intra-	
Table 9:	operative	tudied post-	42
Table 10:	Comparison between the two s		40
Table 10.	groups as regarding visual analogue		44
Table 11:	Comparison between the two s		11
	groups as regarding PONV		45
Table 12:	Comparison between the two s		23
	groups as regarding patient satisfacti		46

Tist of Figures

Fig. N	ا ر.	Title	Page No.
Fig. 1	:	Visual analogue scale	6
Fig. 2	:	Chest wall muscles	8
Fig. 3	:	Pectoral nerves	9
Fig. 4	:	Intercostals nerves	10
Fig. 5	:	Pectoral nerves and long thoracic nerve	11
Fig. 6	:	The structure of Bupivacaine	12
Fig. 7	:	Ultrasound view of Pecs I	19
Fig. 8	:	Ultrasound view Pecs II	20
Fig. 9	:	Probe position Pecs I	29
Fig. 1		Ultrasound view of Pecs I (pec. n pectoralis major and pec. minor: pector minor)	oralis
Fig. 1	1:	Probe position in Pecs II	30
Fig. 1		Ultrasound view of Pecs II (Pmm: pect minor muscle, SAM: serratus anterior m R3: third rib and R4: fourth rib)	uscle,
Fig. 1		Percentage of patients needed intra-oper fentanyl	
Fig. 1		Percentage of patients required post-oper Nalbuphine.	
Fig. 1		Comparison between the two studied grass regarding VAS scale at rest	_

Introduction

Breast cancer is a major health burden worldwide. According to the latest report of The International Agency for Research on Cancer (GLOBOCAN 2012), breast cancer is the world's most common cancer among women, and the most likely cause of death worldwide. The age-specific incidence rates in Egypt show a progressive increase after the age of 30 years, to reach a sharp peak at the age group of 60-64 years (*Azim et al.*, 2014).

The main treatments for breast cancer are surgery, radiotherapy, chemotherapy, hormonal therapy and biological therapy. The type and the combination of treatments depend on the type of the cancer and its stage. Surgery is usually the first choice of treatment for breast cancer (Maughan et al., 2010).

After breast surgeries acute postoperative pain may occurs significantly and it may progress to chronic pain (*Bashandy et al.*, 2015).

Unfortunately, even after adequate treatment, some patients experience severe pain either due to disease progression or due to treatment related side effects. The persistent pain causes a negative physical and psychosocial impact on patients' lives. Usually adequate analgesia is achieved by adopting the WHO's three steps analgesic ladder. As the disease progresses, the pain experienced by the patient

also increases. This necessates the administration of opioids adjuvant analgesics to the breast cancer patients experiencing severe pain. However, opioid use is associated with intolerable side effects like constipation, nausea, vomiting, fear of dependence, and tolerance. Concomitant medications are required to combat these unacceptable side effects. Adjuvant analgesics need to be added to provide adequate and satisfactory analgesia. These factors worsen the psychological state of patients and deteriorate their quality of life. Hence, there is a need to develop therapeutic modalities to provide adequate analgesia with minimum side effects (Handy et al., 2011).

Postoperative pain:

Pain is defined by the International Association for study of pain (IASP) as an unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage (Loeser et al., 2008).

Postoperative pain often is characterized as acute nociceptive pain and the neuropathic pain may be associated with excessive stretching of or direct trauma to peripheral nerves (Hartrick et al., 2004).

Acute pain is the normal predictable neurophysiologic response to noxious mechanical, thermal, or chemical stimuli which is carried to the higher brain center by receptors and

neurons. It is generally time-limited, and decreases with the cessation of the noxious stimuli. This pain sensation is usually limited to the area of trauma or damage or to the area that immediately surrounds it. The painful sensations associated with such an injury are expected to resolve over time when adequate wound healing has occurred. In contrast, chronic pain persists beyond either the course of an acute injury or illness or its expected time for healing and repair and it is defined as pain persisting greater than six months after surgery (Fishman et al., 2012).

Although pain is a predictable part of the postoperative experience, inadequate management of pain is common. Unrelieved postoperative pain may result in clinical and psychological changes that increase morbidity and mortality as well as costs and that decrease quality of life (Apfelbaum et al., 2003).

Ineffective post operative pain management may leads to:

Development of chronic post mastectomy pain which is associated with impaired quality of life in 50% of the patients undergoes breast surgeries. Specific early analgesic interventions may reduce the incidence of chronic pain after surgery. The development of chronic post-mastectomy pain is a complex process. It may be referred to nerve injury and associated ectopic neural activity which leads to neuropathic pain. In addition, inflammatory and immune reactions after axonal damage release neurotransmitters which act locally

and in the spinal cord to produce hypersensitivity. In turn, central sensitization is developed and characterized by heightened dorsal horn neural activity and amplification of sensory flow. It may alter central nervous system function and structure (Kehlet et al., 2006).

- Limitation of the movement of the thoracic and abdominal muscles and this may cause some degree of respiratory dysfunction with secretions and sputum being retained because of a reluctance to cough and may be followed by atelectasis and pneumonia (D'Arcy et al., 2013).
- Increase sympathetic nervous system activity which, in turn, increases heart rate, blood pressure and peripheral vascular resistance that increase the oxygen consumption of the myocardium. When oxygen consumption is greater than oxygen supply, myocardial ischemia and myocardial infarction mayoccur (Macintyre et al., 2001; Warltier et al., 2000).
- Psychological factors that influence the experience of pain include the processes of attention, cognitive processes, behavioral responses, and interactions with the person's environment (Mayes et al., 2007).
- Suppression of immune function by the surgical stress response and by increasing the need for opioids. Opioids, especially morphine, inhibit both cellular and humoral immune functions (Sessler et al., 2014).

- Increase cortisol, antidiuretic hormone, and catecholamines, decrease insulin, hyperglycemia, glucose intolerance and retention of water and sodium (Kehlet et al., 2003).
- Untreated pain may cause reduction in fibrinolysis, increase platelets activity and activation of coagulation cascade may increases the risk of deep vein thrombosis (DVT) and pulmonary embolism (McCaffery et al., 1999).
- Delayed gastric emptying and reduced bowel motility increase the potential for the development of paralytic ileus (Baig et al., 2004).

Pain assessment helps to determine whether pain management is adequate, whether analgesic drugs or analgesic dose changes are required and whether changes in the postoperative pain management plan or additional interventions are needed (Chou et al., 2016).

The evaluation of pain after surgery is complex. The visual analogue scale (VAS) and numeric rating scale (NRS) for assessment of pain intensity are equally sensitive in assessing acute pain in adults after surgery (Reich et al., 2016) (Fig1)

The studies suggest that the reliability of the VAS for acute pain measurement appears to be high (Bijur et al., 2001).

The Visual Analogue Scale (VAS) was first used in psychology by Freyd in 1923.(VAS) consists of a straight line of 10 cm length with two end point representing the extreme limits such as 'no pain at all' and 'pain as bad as it could be'. The patient is asked to mark his pain level on the line between the two end points. The distance between the two end points defines as the subject's pain. The advantages of (VAS) are it can be used positively with other self-reporting measures of pain intensity. Also when pain intensity measured at two different points of time by VAS, it represents the real difference in the magnitude of pain which seems to be a major advantage of this tool compared to others. But the VAS as disadvantage difficult to understand be more than seems to methods and susceptible measurement more to misinterpretations. In conclusion, VAS is valuable instruments to assess pain intensity and changes due to therapy when respondents are given good instructions (*Haefeli et al.*, 2006).

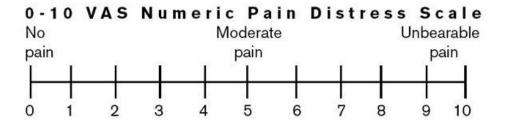


Fig. 1: Visual analogue scale (*Breivik et al.*, 2016)