

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

The Prognostic Value of Hypophosphatemia in Acute Exacerbation of Chronic Obstructive Pulmonary Disease (COPD)

Thesis

Submitted for Fulfillment of Master Degree in Critical Care Medicine

By

Sarah Tarek Selim Dabbour M.B; B.CH.

Under Supervision of

Dr. Azza Atef Abd Elalim

Professor of Anesthesiology, Intensive Care Medicine and Pain Management Faculty of Medicine - Ain-Shams University

Dr. Ramy Monir Wahba

Assistant Professor of Anesthesiology, Intensive Care Medicine and Pain management Faculty of Medicine - Ain-Shams University

Dr. Tarek Samir Shabana

Lecturer of Anesthesiology, Intensive Care Medicine and Pain Management Faculty of Medicine - Ain-Shams University

Ain-Shams University - Faculty of Medicine

2020

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

وَمَا تَوْفِيقِي إِلَا بِاللّهِ عَلَيْهِ تَوْفِيقِي إِلّا بِاللّهِ عَلَيْهِ تَوْفِيقِي وَإِلَيْهِ أَنِيبٌ " تَوَكَالْتُ وَإِلَيْهِ أَنِيبٌ "

صدَقَ الله العَظِيم

سورة هود (۸۸)

Acknowledgement

Thanks, first and forever to AUAH for his great care, support and guidance in every step in my life.

I would like to express my deepest gratitude to **Prof. Dr. Azza Atef Abd Elalim**, Professor of Anesthesiology, Intensive care medicine and Pain management Faculty of Medicine - Ain-Shams University, for here constant encouragement, kind guidance, and continuous support.

I wish also to express my supreme gratitude and appreciation to **Dr. Ramy Monir Wahba**, Assistant professor of Anesthesiology, Intensive care medicine and Pain management Faculty of Medicine - Ain-Shams University, for his meticulous supervision and his general support throughout the whole work which are sincerely appreciated.

My great appreciation to **Dr. Tarek Samir Shabana**, Lecturer of Anesthesiology, Intensive care medicine and Pain management Faculty of Medicine - Ain-Shams University, for his continuous support throughout the whole work.

Last but not least, none of my work would have been possible without the constant support of my family.

Dr. Sara Farek Selim Dabbour

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iii
Introduction	1
Aim of the Work	2
Review of Literature	
Chronic Obstructive Pulmonary Disease	3
Hypophosphatemia	22
Impact of hypophosphatemia on patients with COP	D30
Patients and Methods	32
Results	35
Discussion	39
Summary	44
Conclusion	46
Recommendations	47
References	48
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table (1):	GOLD criteria for the diagnosis of C	OPD11
Table (2):	MRC shortness of breath scale	12
Table (3):	Differential Diagnosis of COPD	16
Table (4):	Demographic distribution of s groups, data is presented in mean numbers & percent	n, SD,
Table (5):	Level of phosphorus among s groups, data is presented in mean &	
Table (6):	Severity of COPD exacerbation in groups according to MRC Shortn Breath Scale	ess of
Table (7):	Ventilation need according to le phosphorus, data is presented in nu & percent.	ımbers
Table (8):	Outcome of studied subjects, da presented in numbers & percent	
Table (9):	Duration of ventilation in ventilation, data is presented in mean	
Table (10):	Duration of ICU Stay for Impatient in both Groups, data is prein mean & SD.	sented

Tist of Figures

Fig. No.	Title	Page No.
Figure (1):	Chronic obstructive pulmonary diseas	e5
Figure (2):	On the left is a diagram of the lungs airways with an inset showing a deta cross-section of normal bronchioles alveoli. On the right are lungs dama by COPD with an inset showing a cresction of damaged bronchioles alveoli.	ailed and aged coss- and
Figure (3):	Micrograph showing emphysema (le large empty spaces) and lung tissue verelative preservation of the alveoli (rig	with
Figure (4):	Chest X-ray demonstrating severe CO	PD14
Figure (5):	A lateral chest X-ray of a patient very emphysema: (barrel chest and diaphragm).	flat
Figure (6):	A severe case of bullous emphysema	15
Figure (7):	Axial CT image of the lung of a per with end-stage bullous emphysema	

Tist of Abbreviations

Abb.	Full term
ABGs	Arterial blood gases.
AECOPD	Acute exacerbated chronic obstructive
	pulmonary disease.
<i>AIDS</i>	Acquired immunodeficiency syndrome
<i>ALT</i>	Alanine aminotransferase.
AST	Aspartate aminotransferase.
ATP	Adenosine triphosphatase.
	Calcium.
<i>CBC</i>	Complete blood count.
CO2	Carbon dioxide.
COPD	Chronic obstructive pulmonary disease.
<i>CPK</i>	Creatine phosphokinase
<i>Cr</i>	Creatinine
CT	Computed tomography
<i>DLCO</i>	Diffusing capacity of the lung for carbon monoxide.
<i>ECG</i>	$Electrocardiogram.$
	Fractional excretion of sodium
	Fractional excretion of phosphate
	Forced expiratory volume in one second.
	Fraction of inspired oxygen.
	Forced vital capacity.
	Global Initiative for Chronic Obstructive Lung Disease.
HCO3	$Bicarbonate.$
	Inspiration to expiration ratio
	$In haler\ corticosteroids.$
	Intensive care unit.
INR	International Normalized Ratio.

Tist of Abbreviations (Cont...)

Abb.	Full term
K	Potassium.
LABAs	Long acting beta agonists.
<i>LAMAs</i>	Long acting muscarinic agonist
MDI	Metered dose inhaler.
MEq	Milliequivalent.
Mg	milligram.
MgSO4	Magnesium.
Ml	Milliliter
MmHg	Millimeter mercury.
<i>MV</i>	Mechanical ventilation.
Na	"Sodium.
NIPPV	Noninvasive positive pressure ventilation.
	. National Lung, Heart, and Blood Institute
	"Negative Predictive value.
	. Partial pressure of arterial carbon dioxide.
PaO2	Partial pressure of arterial oxygen.
	Positive end-expiratory pressure.
	Negative logarithm of hydrogen ion concentration.
PO4	Phosphorus.
<i>PPV</i>	. Positive Predictive Value.
Pt	Prothrombin time.
<i>PTH</i>	Parathormone
Ptt	. Partial thromboplastin time.
<i>RBS</i>	Random blood sugar.
SaO2	. Arterial oxygen saturation.
SD	. Standard deviation
SPSS	. Statistical package for social science.
<i>VT</i>	
<i>WHO</i>	. World Health Organization

Introduction

cute exacerbations of Chronic Obstructive Pulmonary Disease with decompensated respiratory acidosis lead to repeated hospital admissions and are associated with high mortality, making it the leading cause of disability and morbidity².

The admission of COPD patients to an intensive care unit is common, and up to 74% of these patients need mechanical ventilatory support. Thus, correction of the precipitating factors is the cornerstone in improving the outcome and minimizing the length of hospital stay in such patients ³.

Hypophosphatemia may interfere with respiratory function in COPD patients through different mechanisms such as muscular exhaustion, respiratory muscle weaknesses, which is common among hypophosphatemic patients, and usually improves with phosphate repletion⁴.

Previous studies showed a relationship between severity of disease and blood phosphorus levels. However, the association between phosphorus levels and outcome as well as duration of mechanical ventilation in COPD patients remains unclear ⁵.

AIM OF THE WORK

This study aims to examine the prognostic value of hypophosphatemia in COPD patients and evaluate the association between serum phosphorus levels and severity of attacks, need for mechanical ventilatory support, mortality and duration of mechanical ventilation and ICU stay.

Chapter 1

CHRONIC OBSTRUCTIVE PULMONARY DISEASE

Chronic obstructive pulmonary disease is a common respiratory condition characterized by airflow limitation. It affects more than 5% of the population and is associated with high morbidity and mortality. It is the third-ranked cause of death in the United States, killing more than 120,000 individuals each year. As a consequence of its high prevalence and chronicity, COPD causes high resource utilization with frequent clinician office visits, frequent hospitalizations due to acute exacerbations, and the need for chronic therapy (e.g., supplemental oxygen therapy, medication) ⁶.

Establishing a correct diagnosis of COPD is important because appropriate management can decrease symptoms (especially dyspnea), reduce the frequency and severity of exacerbations, improve health status, improve exercise capacity, and prolong survival. As current and former smokers are also at risk for a number of other medical problems for which treatment is very different, respiratory symptoms should not be attributed to COPD without appropriate evaluation and diagnosis ⁷.

I. Definition:

The definition of COPD and its subtypes (emphysema, chronic bronchitis, and chronic obstructive asthma) and the interrelationships between the closely related disorders that cause airflow limitation provide a foundation for understanding the spectrum of patient presentations⁷.

Several features of COPD patients identify individuals with different prognosis and/or responses to treatment. Whether these features identify separate "phenotypes" of COPD or reflect disease severity remains unclear. However, evaluation of these features can help guide clinical management, and their use in classification of patients is now recommended.

The Global Initiative for Chronic Obstructive Lung Disease, a project initiated by (NHLBI) and (WHO), defines COPD as follows:

COPD is a common, preventable, and treatable disease that is characterized by persistent respiratory symptoms and airflow limitation that is due to airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles or gases. The chronic airflow limitation that characterizes COPD is caused by a mixture of small airways disease (e.g., obstructive bronchiolitis) and parenchymal destruction (emphysema), the relative contributions of which vary from person to person. Chronic inflammation causes