

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

MANUFACTURING OF COMPOSITE MATERIALS USED FOR CAMOUFLAGING AND CONCEALMENT FOR UAV (STEALTH)

By **Ahmed Mamdouh Azab**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

MANUFACTURING OF COMPOSITE MATERIALS USED FOR CAMOUFLAGING AND CONCEALMENT FOR UAV (STEALTH)

By Ahmed Mamdouh Azab

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
.

1n Chemical Engineering

Under the Supervision of

Dr. Hesham Tantawy	
Associate Professor	
Chemical engineering department	
Military Technical College	

MANUFACTURING OF COMPOSITE MATERIALS USED FOR CAMOUFLAGING AND CONCEALMENT FOR UAV (STEALTH)

By **Ahmed Mamdouh Azab**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Approved by the
Examining Committee

Prof. Dr. Nabil M. Abdelmonem

Thesis Main Advisor

Prof. Dr. Mohammed. H.Mahmoud

Internal Examiner

Prof. Dr. Mohammed. A.Gobara

(Head of Chemical engineering department, Military Technical College)

Engineer's Name: Ahmed Mamdouh Azab

Date of Birth: 8 /12 /1980 **Nationality:** Egyptian

E-mail: ahmedazabelkanawaty@gmail.com

Phone: 01027459877
Address: Nasr City, Egypt
Registration Date: 1/10/2014
Awarding Date: //2020

Degree: (Master of Science) **Department:** Chemical Engineering

Supervisors:

Prof. Dr. Nabil M. Abdelmonem Dr. Hesham. Ramzy Tantawy

Chemical engineering department, Military Technical

College

Examiners:

Prof. Dr. Nabil. M. Abdelmonem (Thesis main advisor)

Prof. Dr Mohammed. Mahmoud (Internal examiner)

Prof.Dr Mohammed Ahmed Gobara (External examiner)

Head of Chemical engineering department,

Military Technical College

Title of Thesis:

Manufacturing of composite materials used for camouflaging and concealment for UAV (stealth).

Key Words:

Stealth; Composites; Preparation; Characterization; measurements.

Summary:

composite materials used for camouflaging and concealment for unmanned aerial vehicles UAV from radar waves are prepared by using Graphene / polyethylene matrix. Graphene used in the matrix are in the form of chemically reduced graphene oxide RGO or thermally reduced graphene intercalated GI-Th. Characterization are done for both pure graphite G, RGO and GI-Th. Composite polymer matrix is prepared utilizing 0.7 g sample of 10, 20 and 30% mass loading of G, RGO and GI-Th. EM measurements are done by using Network Analyzer device under the frequency range (8-12)GHz to obtain RL and TL of the composites.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ahmed Mamdouh Azab	Date://
Signature:	

Dedication

I would like to dedicate the present work to my family, my parents and my brothers, who have been supporting me in all steps of my life

Acknowledgments

Praise to "Allah", the Most Gracious and the Most Merciful Who Guides Us to the Right Way

All praises and thanks to Allah, the lord of the Words, the sustainer of the universe, and the rule of the day of resurrection. He provided me with all means of support, guidance, patience and ability to complete this work.

No words can adequately express my deepest gratitude to:

- 1. Prof. Dr. Nabil Mahmoud Abdelmonem.
- 2. Dr. Hesham Ramzy Tantawy

for their moral support, valuable instructions, priceless advices, continuous supervision, and encouragement.

Thanks for Chemical Engineering Department in **Cairo University**, **Military Technical College**, **Central Labs of Chemical Warfare Institution** for great efforts in the experimental work, it would have been difficult indeed to have made such progress without their assistance.

Special Thanks to **Dr**. **Magdi Darwish** for helping me in the electromagnetic measurements.

Thanks to all my family for their continuous help and encouragement. Finally, my thanks to all people who helped and gave me a hand to carry out this work.

Table of Content

TABLE OF CONTENTS	IV
LIST OF TABLES	VII
LIST OF FIGURES	VIII
NOMENCLATURE	X
ABSTRACT	XII
CHAPTER 1 : INTRODUCTION	1
CHAPTER 2 : LITERATURE REVIE	3
2.1. BACKGROUND ON THE STEALTH TECHNOLOGY	3
2.2. UAV SIGNIFICANCE	
2.3. STEALTH CHALLENGE.	
2.3.1. Infra- red stealth	
2.3.2. Acoustic Stealth	
2.3.3. Visual Stealth	
2.3.4 . Radar Stealth	
2.4. THEORY OF RADAR STEALTH	
2.4. THEORY OF RADAR STEALTH7	
2.4.1. Radar Principals:	7
2.4.2. Radar Cross Section:	8
2.4.3. Interaction Of Radar Wave With Matter:	10
2.4.4. Electromagnetism	11
2.4.4.1 Permittivity	11
2.4.4.2 Permeability	12
2.4.4.3 Reflectivity Minimization	13
2.5. RADAR ABSORBING MATERIALS (RAMS)	15
2.5.1 Nanostructured Radar Absorbing Materials	15
2.6 GRAPHENE	15
2.6.1 Graphene Synthesis	19
2.6.1.1 Chemical Vapor Deposition (CVD)	
2.6.1.2 Graphene Synthesis by Mechanical Cleavage	19
2.6.1.3. Graphite Chemical Intercalation	20
2.6.1.4. Graphite Chemical Oxidation	21
2.6.2 polymer Based Composites	22

2.7.	Gl	RAPHENE NANO COMPOSITES CHARACTERIZATION	22
2.7.	1.	Graphene Nano Composites Instrumental Characterization	22
2.7	.2	.Electromagnetic Measurement	22
СНА	PTE	ER 3: EXPERIMENTAL WORK	26
3.1.	M	ATERIALS AND CHEMICALS	26
3.2.	SY	YNTHESIS PROCEDEURE	27
3.2.	1	Preparation of Thermal Reduced Graphite Intercalated	27
3.2.	.2	Preparation of Reduced Graphene Oxide RGO	27
3.	2.2.1	Preparation of Graphite Oxide GO by Using Improved Hummer Method	27
3	.2.2.2	. Reduction of Graphite Oxide	29
3.2.	.3	Preparation of Graphene- Polyethylene Matrix	30
3.3.	Ins	strumentations AND Characterization	31
3.3	.1.	Dispersive Raman spectroscopy	31
3.3	.2.	X-Ray Diffraction Analysis (XRD)	31
3.3	.3	Scanning Electron Microscope (SEM)	32
3.3	.4.	Electromagnetic Measurement.	33
СНА	PTE	ER 4: RESULTS AND DISCUSSIONS	36
4.1	RA	AMAN SPECTROSCOPY	36
4.2.	TH	HE X RAY DIFFRACTION ANALYSIS XRD	40
4.3.	M	ORPHOLOGICAL ANALYSIS	41
4.3	.1	Scanning Electron Microscope (SEM)	41
4.3	3.2	EDAX Analysis	44
4.3	3.3	TEM Analysis	44
4.4.	EI	LECTROMAGNETIC MEASURMENTS	45
4.4	.1	Electromagnetic Measurements For G, GI-Th and RGO	48
4.4	.2	Electromagnetic Measurements For G, GI-Th and RGO Composite	48
	4.4.2.	1 Reflection Loss Measurements	48
	4.4.2	.2 Transmission Loss Measurements	50
	4.4.2	.3 Mass loading percentage impact reflection loss and transmission loss	52
CON	CLU	USIONS AND RECOMMENDTIOS5	5
REFI	ERE	INCES50	6

List of Tables

Table (2.1) Radar bands and usage	10
Table (3.1) Chemical used in preparation	26
Table (3.2) Preparation of G, RGO and GI-Th / Polyethylene composites	
Table (4.1) Peak table relative peak intensity for G, GI, GI-Th and GI-MW	38
Table (4.2) The relative peak intensity values of both G-NICE and RGO	39
Table (4.3) EDX analysis of G-NICE, GI and GI-Th	44
Table (4.4) average transmission loss and reflection loss of 0.7 gm.	
of G, RGO and GI-Th at X band range	48
Table (4.5) mass loading percentage impact on RL	53
Table (4.6) mass loading percentage impact on TL	54

List of Figures

Figure (2.1) The RQ-3 UAV	
Figure (2.2) X-47A UAV	
Figure (2.3) Wing-Long UAV	
Figure (2.4)Electromagnetic waves.	
Figure (2.5)Electromagnetic radiation spectrum	
Figure (2.6) Radar cross section of different targets	
Figure (2.7) reflection- transmission-absorption of EMW	
Figure (2.8)Dielectric polarization.	.12
Figure (2.9) Polarized and un-polarize dielectric material	12
Figure (2.10) Different types of permeability	
Figure (2.11) Sp1 hybridization (a), sp2hybridization(b)	
Figure (2.12) The physical structure of graphene	
Figure (2.13) Piece of natural graphite (a), layered structure of graphite(b)	
Figure (2.14) Dimensional structure of grapheme, graphite, nanotube and fullerene	.18
Figure (2.15) The graphite sheets an intercalates	20
Figure (2.16)The intercalation process of graphite	21
Figure (2.17) The physical structure of graphite oxide	
Figure (2.18) Classification of electromagnetic Characterization methods	
Figure (2.19)Transmission /Reflection Characterization methods	
Figure (2.20) The setting of the two-port analyzer	
Figure (3.1) Preparation of GI-Th from pure graphite	
Figure (3.2) Improved Hummer Method	
Figure (3.3) The preparation of RGO	
Figure (3.4)Preparation of RGO Polyethylene composite	
Figure (3.5) Bruker Raman Spectroscopy	
Figure (3.6)X-Ray diffractometer	
Figure (3.7)Scanning Electron Microscope	
Figure (3.8) The Network Analyzer	
Figure (3.9) Waveguide Samples (a) Before heating (b) After heating	
Figure (4.1) Raman analysis for G, GI, GI-Th and GI-MW	
Figure(4.2)Raman analysis for graphite and reduced graphene oxide	
Figure (4.3) Figure (4.3) XRD analysis of G-NICE, GI, GI-Th and GI-MW	.40
Figure (4.4) The XRD analysis of RGO with respect to G-NICE	.41
Figure (4.5) SEM and corresponding EDX of G-NICE, GI and GITh	
Figure (4.6) SEM of 10% G, RGO and GI-Th /Polyethylene composites43	
Figure (4.7) TEM for GO, RGO	.45
Figure (4.8 Reflection losses of Graphite (G), (RGO), and (GI-Th)	
Figure (4.9) Transmission losses of Graphite (G), (RGO), and (GI-Th)	
Figure (4.10) Reflection loss of 10, 20 and 30% G/PE composite	
Figure (4.11) Reflection loss losses of 10, 20 and 30% of RGO-Polyethylene	
Figure (4.12) Reflection loss losses of 10, 20 and 30% of GI-Th-Polyethylene	
Figure (4.13)Transmission losses of 10, 20 and 30% of graphite-Polyethylene	
Figure (4.14) Transmission losses by 0.7g of 10, 20 and 30% of RGO-Polyethylene.	

Figure (4.15) Transmission losses by 0.7g of 10, 20 and 30% of GITh-Polyet	hylene.52
Figure (4.16) Impact of mass loading percentage of G, RGO, and GITh	utilized in
polyethylene composite average RL	52
Figure (4.17) Impact of mass loading percentage of G, RGO, and GI-Th	utilized in
polyethylene composite on average TL	54