

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

بسم الله الرحمن الرحيم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكتروني والميكروفيلو

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

MONA MAGHRABY

شبكة المعلومات الجامعية التوثيق الإلكترونى والميكروفيلم

جامعة عين شمس التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة بعيدا عن الغبار

MONA MAGHRABY

OPTIMIZED RECEIVER STRUCTURE FOR POINT TO POINT FREE SPACE OPTICAL COMMUNICATION OVER ORBITAL ANGULAR MOMENTUM

By

Alaa El-Din ElHilaly Mohamed Ahmed Eid

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Electronics and Communications Engineering

OPTIMIZED RECEIVER STRUCTURE FOR POINT TO POINT FREE SPACE OPTICAL COMMUNICATION OVER ORBITAL ANGULAR MOMENTUM

By Alaa El-Din ElHilaly Mohamed Ahmed Eid

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Electronics and Communications Engineering

Under the Supervision of

Dr. Mohamed Mohamed Khairy

Professor of Communications Department Faculty of Engineering, Cairo University

Dr. Ahmed Hesham Mehanna .

Associate Professor of Communications Electronics and Communications Engineering Electronics and Communications Engineering Department Faculty of Engineering, Cairo University

OPTIMIZED RECEIVER STRUCTURE FOR POINT TO POINT FREE SPACE OPTICAL COMMUNICATION OVER ORBITAL ANGULAR MOMENTUM

By Alaa ElDin ElHilaly Mohamed Ahmed Eid

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSOPHY**

in **Electronics and Communications Engineering**

Approved by the Examining Committee

Prof. Dr. Mohamed Mohamed Khairy, Thesis Main advisor

Associate prof. Dr. Ahmed Hesham Mehanna, Advisor

Prof. Dr. Heba Morad, Internal Examiner

Prof. Dr. Ibrahim Ismail Ibrahim,

Professor at Faculty of Engineering, Helwan University

External Examiner

Engineer's Name: Alaa ElDin ELHilaly Mohamed

Date of Birth: 7/6/1977 **Nationality:** Egyptian

E-mail: <u>alaa7elhelaly@hotmail.com</u>

Phone: 01005009105.

Address: 24 Abdel Azeem Rashed ELAhgouza

Registration Date: 1/Oct./2012. **Awarding Date:**/2020

Degree: Doctor of Philosophy

Department: Electronics and Communications Engineering

Supervisors:

Prof. Dr. Mohamed Mohamed Khairy

Associate Prof. Dr. Ahmed Hesham Mehanna

Examiners:

Prof. Dr. Mohamed Mohamed Khairy (Thesis Main Advisor)

Associate Prof. Dr. Ahmed Hesham Mehanna (Advisor)

Prof. Dr. Heba Morad (Internal examiner)
Prof. Dr. Ibrahim Ismail Ibrahim (External examiner)

(Professor at Faculty of Engineering Helwan University)

Title of Thesis:

Optimized Receiver Structure for Point to Point Free Space Optical Communication over Orbital Angular Momentum

Kev Words:

Orbital Angular Momentum; Aggregate capacity; Free Space Optical Communication;

Summary:

This study focuses on some practical aspects that enable the free space optical communication system over orbital angular momentum modes, specifically the receiver structure and modes selection. Three contributions are introduced. The first one is the space filtering approach where the partial-pattern receiver for transmitted orbital angular momentum (OAM) multi-modes is explored. The modes are included in the Laguerre-Gaussian beam propagating under non-Kolmogorov weak-to-moderate turbulence. The partial pattern effect is studied on the achievable capacity and the error rates. Controlled parameters are derived as well. The second one is a simple iterative algorithm to determine the optimum (in terms of the system capacity) set of multiple orbital angular momentum (OAM) modes. The modes are propagating over Free space optical (FSO) communication beam for a given receiver radius. The algorithm is derived using generalized channel efficiency matrix. The new algorithm has complexity reduction in the order of $(2^{\tilde{N}})/\tilde{N}^2$ where \tilde{N} is the number of available modes. Based on the above, a third contribution includes a deep learning detection mechanism for Multiple-Input-Single-Output (MISO) application is proposed and proved superior performance.

Disclaimer

I hereby declare that this thesis is my own original work and no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all resources and have cited them in the reference section.

Name: Alaa El-Din ELHilaly Mohamed Ahmed Eid Date:

Signature

Dedication

To the soul of my father Prof. El-Hilaly Mohamed Ahmed Eid.

Acknowledgments

This work was not to come to light without the massive support, review and encouragement of my supervisors; Dr. Mohamed Khairy and Dr. Ahmed Hesham.

Also, I would like to thank Dr. Yasmine Fahmy for her great role in guiding the technical criticism throughout the seminar and the thesis finalization that helped in filling some gaps in the thesis journey conclusion especially in Machine Learning applications and turbulence model used.

Special acknowledgment goes as well to Dr. Mai Kafafy in reviewing and discussion of applying machine learning in the detection and getting the final contribution of this thesis in the final form.

Table of Content

DISCLAI	MER	I
DEDICA	ΓΙΟΝ	II
ACKNOV	VLEDGMENTS	III
TABLE C	OF CONTENT	IV
LIST OF	TABLES	VI
	FIGURES	
	ABBREVIATIONS AND SYMBOLS	
	CT	
	R 1: INTRODUCTION	
1.1.	THESIS CONTRIBUTION	
1.2.	THESIS ORGANIZATION	3
CHAPTE	R 2 : LITERATURE REVIEW	4
2.1.	INTRODUCTION	
2.2.	OAM IN FREE SPACE COMMUNICATION	
2.2.1.	Wave equation and OAM generation	
2.2.2.	Deriving Channel Efficiency Matrix	
2.2.3.	Turbulence effect on Channel efficiency	12
2.2.4.	Aggregate capacity	14
2.3.	CHANNEL TURBULENCE	15
2.3.1.	Deriving basic turbulence model	
2.3.2.	Comment on other Turbulence models	
2.3.3.	Turbulence in Wave equation	
2.3.4.	Turbulence screen and Split Step	
2.4.	PATTERN RECOGNITION AND MACHINE LEARNING	
2.4.1.	Pattern segmentation and Neural Network	
2.5.	RELATED OAM RESEARCH	
2.5.1.	Generation:	
2.5.2.	Enhanced Detection	
2.5.3. 2.6.	Alignment issues and NLOS model: CONCLUSION	
CHAPTE	R 3 : SYSTEM MODEL	
3.1.	SINGLE BEAM SINGLE MODE	
3.2.	SINGLE BEAM WITH MULTIPLE MODE	38
3.3.	MULTIPLE BEAMS AND MIMO MODEL	41
3.4.	NEURAL NETWORK MODULE	44
3.5.	CONCLUSION	44
CHAPTE	R 4 : OAM OPTIMIZED MODES SELECTION	45
4.1.	CONDITIONS ON AGGREGATE CAPACITY	45
4.2.	MODIFIED CHANNEL FOR ALIGNMENT DRIFT	45
4.3.	CAPACITY ACHIEVING ALGORITHM	47
431	Optimality Discussion	

4.4.	COMPLEXITY REDUCTION	55
4.5.	THE SELECTED SET PROPERTIES	56
4.5.1.	The Effect of propagation distance	56
4.5.2.	Selected Set Symmetry	57
4.6.	CONCLUSION	58
CHAPTE	R 5 : PARTIAL PATTERN RECEIVER	 59
5.1.	RULES FOR ACHIEVING PERFORMANCE GAIN	64
5.2.	REDUCED PATTERN USE-CASES	67
5.2.1.	Use case I: Single beam configuration.	
5.2.2.	Use case II: Multiple beams configuration	69
5.2.3.	Partial patterns Receiver without power splitting	72
5.3.	CONCLUSION 75	
CHAPTE	R 6 : EQUALIZATION, MIMO AND DEEP LEARNING	76
6.1.	OAM MIMO EQUALIZATION	76
6.2.	MACHINE LEARNING IN SEGMENTED OAM RECEIVER	81
6.2.1.	Introduction	81
6.2.2.	Evolving from classical to machine learning	
6.2.3.	Receiver MIMO model	
6.2.4.	Modes Spectrum Analysis	
6.2.5.	Hybrid receiver structure	
6.2.6.	Seeds concept	
6.2.7.	Seeds to modes assignment options	
6.2.8.	Completing the hybrid receiver structure	
6.2.9.	Applying hybrid receiver to <i>M</i> beams	97
6.2.10.		101
6.2.11.		
6.3.	CONCLUSION	111
DISCUSS	ION AND CONCLUSIONS	112
LIST OF	PUBLICATIONS	115
REFERE	NCES	116
APPENDI	X A: DERIVATION OF DRIFTED RECEIVER CHANNEL	135
	X B: CAPACITY OPTIMIZATION HARDNESS	
	X C: APPROXIMATION OF EO. (5.4)	144

List of Tables

Table 4.1: Optimization algorithm to get optimum modes set	50
Table 5.1: Exact and approximate radii of mode's power	63
Table 6.1: Beam center detection algorithm	98
Table 6.2: Segment receiver space algorithm	99
Table 6.3: Create space segmented filter	99
Table 6.4: Create and train NN modules	100
Table 6.5: Detection and performance measurement algorithm	101
Table 6.6: Structure of Alexnet	
Table 6.7: Complexity comparison	

List of Figures

Figure 2.1: Literature volume	4
Figure 2.2: Plots for different TEM modes [24]	
Figure 2.3: Electric field polarization; from left: linear, spiral, orbital [25, 26]	
Figure 2.4: Amplitude of Gaussian beam with no OAM modes (m=0)	
Figure 2.5: Amplitude and phase of mode'2'	
Figure 2.6: Amplitude of different modes beams in transverse plane	
Figure 2.7: Normal Gaussian beam with no OAM	
Figure 2.8: Beam carrying mode 3	
Figure 2.9: Positive and negative modes	
Figure 2.10: Addition of different orders of HG can get OAM mode [25]	
Figure 2.11: Turbulence effect on the channel efficiency matrix	
Figure 2.12: Evolution of turbulence eddies in atmosphere [24, 42]	
Figure 2.13: Turbulence equivalent 2D screen [42]	
Figure 2.14: Generated turbulence phase screen	
Figure 2.15: Split-Step technique	
Figure 2.16: Optimizing a single screen position in the propagation path [64]	
Figure 2.17: Simple NN [69]	
Figure 2.18: Standard CNN ImagNet structure [71]	
Figure 2.19: Convolution and deconvolution NN (SegNet - Caffe ®) [78]	
Figure 2.20: Summary for related OAM research topics	
Figure 2. 21: OAM generation and detection	
Figure 3.1: System model	36
Figure 3.2: Single beam single mode transmitter model	
Figure 3.3: Single beam multiple modes transmitter	
Figure 3.4: Detection of single beam with multiple modes	
Figure 3.5: MIMO model of OAM modes beams	
Figure 3.6: Neural network detection module	
6	
Figure 5.1: Introducing partial pattern detection	59
Figure 5.2: Scenarios for reducing receiving pattern	
Figure 5.3: One third sub-ring matching pattern	
Figure 5.4: Quarter area receiver performance	
Figure 5.5: Quarter receiver, high leakage modes selection	
Figure 5.6: Excluding interference quarter in 2 overlapping received beams	
Figure 5.7: Two overlapping beams partial pattern performance, case1	
Figure 5.8: Excluding interference half in 2 overlapping received beams	
Figure 5.9: Two overlapping beams partial pattern performance, case2	
Figure 5.10: Conventional 4 modes matching receiver with multiple branches	
Figure 5.11: Simplified receiver with four quadrants and no splitting devices	
Figure 5.12: Conventional receiver with 4 complete matching phase patterns	
Figure 5.13: The combined 4 quarters matching partial patterns in one receiver	
5	•
Figure 6.1: 2x2 MIMO schematic	78
Figure 6.2: The proposed machine learning detection system.	81

Figure 6.4: Higher resolution OAM modes spectrum for the received beam. Figure 6.5: OAM spectrum for 5 operating modes using 61 scanning modes. 88 Figure 6.6: Hybrid receiver structure. 89 Figure 6.7: Demonstration for seeds formulation, and assignment. 89 Figure 6.9: Matching with partial patterns - strip uniform assignment. 91 Figure 6.10: Non-uniform seeds assignment comparison tensor formation. 92 Figure 6.11: Non-uniform seeds assignments - single beam. 95 Figure 6.12: Non-uniform seeds assignments - two beams. 95 Figure 6.13: Non-uniform seeds assignments - three beams. 95 Figure 6.14: Hybrid system construction options. 96 Figure 6.16: Assigned segments for modes of one beam. 102 Figure 6.17: Assigned segments for modes of two beam. 103 Figure 6.18: Assigned segments for modes of four beams. 104 Figure 6.20: Reference partial pattern matching power per mode. 105 Figure 6.21: BER and achieved rates for 1 beam system. 105 Figure 6.22: BER and achieved rates for 1 beam system. 106 Figure 6.23: BER and achieved rates for 1 beams system. 107 Figure 6.25: The effect of turbulence strength – four beams. 108 Figure 6.26: The effect of number of beams. 109 Figure 6.27: The effect of number of beams. 100 Figure 6.28: Intensity parameter C _I . 110 Figure 6.30: Seeds priority parameter C _I . 111 Figure 6.31: Too released assignment. 111 Figure 6.32: OAM re-use pattern to minimize cross-talk effect.	Figure 6.3: Similarity of intensity patterns for 5 bits words	83
Figure 6.6: Hybrid receiver structure. Figure 6.7: Demonstration for seeds formulation, and assignment. Seption 6.8: Uniform seeds assignment for 5 modes (1-5). Figure 6.9: Matching with partial patterns - strip uniform assignment. Figure 6.10: Non-uniform seeds assignment comparison tensor formation. Figure 6.11: Non-uniform seeds assignments - single beam. Figure 6.12: Non-uniform seeds assignments - two beams. Figure 6.13: Non-uniform seeds assignments - two beams. Figure 6.14: Hybrid system construction options. Figure 6.15: Schematic for 16 received overlapped beams. Figure 6.16: Assigned segments for modes of one beam. Figure 6.17: Assigned segments for modes of two beam. Figure 6.18 Assigned segments for modes of four beams. Figure 6.19: Assigned segments for modes of 16 beams. Figure 6.20: Reference partial pattern matching power per mode. Figure 6.21: BER and achieved rates for 1 beam system. Figure 6.22: BER and achieved rates for 2 beams system. Figure 6.23: BER and achieved rates for 4 beams system. Figure 6.25: The effect of turbulence strength – four beams. Figure 6.25: The effect of number of beams. Figure 6.26: The effect of number of beams. Figure 6.27: The effect of modes separation. Figure 6.28: Intensity parameter C_I . Figure 6.29: Seeds numbers parameter C_N . Figure 6.30: Seeds priority parameter C_N . Figure 6.31: Too released assignment. 111 Figure 6.32: Too restricted assignment.	Figure 6.4: Higher resolution OAM modes spectrum for the received beam	87
Figure 6.7: Demonstration for seeds formulation, and assignment 85 Figure 6.8: Uniform seeds assignment for 5 modes $(1-5)$	Figure 6.5: OAM spectrum for 5 operating modes using 61 scanning modes	88
Figure 6.8: Uniform seeds assignment for 5 modes $(1-5)$	Figure 6.6: Hybrid receiver structure.	89
Figure 6.9: Matching with partial patterns - strip uniform assignment 91 Figure 6.10: Non-uniform seeds assignment comparison tensor formation 92 Figure 6.11: Non-uniform seeds assignments - single beam 95 Figure 6.12: Non-uniform seeds assignments - two beams 95 Figure 6.13: Non-uniform seeds assignments - three beams 95 Figure 6.14: Hybrid system construction options 96 Figure 6.15: Schematic for 16 received overlapped beams 98 Figure 6.16: Assigned segments for modes of one beam 102 Figure 6.17: Assigned segments for modes of two beam 102 Figure 6.18: Assigned segments for modes of four beams 103 Figure 6.19: Assigned segments for modes of 16 beams 103 Figure 6.20: Reference partial pattern matching power per mode 104 Figure 6.21: BER and achieved rates for 1 beam system 105 Figure 6.22: BER and achieved rates for 2 beams system 105 Figure 6.23: BER and achieved rates for 4 beams system 105 Figure 6.24: BER and achieved rates for 16 beams system 105 Figure 6.25: The effect of turbulence strength – four beams 107 Figure 6.26: The effect of number of beams 107 Figure 6.27: The effect of number of beams 108 Figure 6.28: Intensity parameter C_I 110 Figure 6.29: Seeds numbers parameter C_I 110 Figure 6.30: Seeds priority parameter C_I 110 Figure 6.31: Too released assignment 111 Figure 6.32: Too restricted assignment 111 Figure 6.32: Too restricted assignment 111	Figure 6.7: Demonstration for seeds formulation, and assignment	89
Figure 6.10: Non-uniform seeds assignment comparison tensor formation 92 Figure 6.11: Non-uniform seeds assignments - single beam 95 Figure 6.12: Non-uniform seeds assignments - two beams 95 Figure 6.13: Non-uniform seeds assignments - three beams 95 Figure 6.14: Hybrid system construction options 96 Figure 6.15: Schematic for 16 received overlapped beams 98 Figure 6.16: Assigned segments for modes of one beam 102 Figure 6.17: Assigned segments for modes of two beam 102 Figure 6.18: Assigned segments for modes of four beams 103 Figure 6.19: Assigned segments for modes of 16 beams 103 Figure 6.20: Reference partial pattern matching power per mode 104 Figure 6.21: BER and achieved rates for 1 beam system 105 Figure 6.22: BER and achieved rates for 2 beams system 105 Figure 6.23: BER and achieved rates for 16 beams system 106 Figure 6.24: BER and achieved rates for 16 beams system 106 Figure 6.25: The effect of turbulence strength – four beams 107 Figure 6.26: The effect of number of beams 108 Figure 6.27: The effect of number of beams 108 Figure 6.28: Intensity parameter C_I 110 Figure 6.29: Seeds numbers parameter C_I 110 Figure 6.30: Seeds priority parameter C_I 110 Figure 6.31: Too released assignment 111 Figure 6.32: Too restricted assignment 111	Figure 6.8: Uniform seeds assignment for 5 modes (1-5)	91
Figure 6.11: Non-uniform seeds assignments - single beam	Figure 6.9: Matching with partial patterns - strip uniform assignment	91
Figure 6.12: Non-uniform seeds assignments - two beams 95 Figure 6.13: Non-uniform seeds assignments - three beams 95 Figure 6.14: Hybrid system construction options 96 Figure 6.15: Schematic for 16 received overlapped beams 98 Figure 6.16: Assigned segments for modes of one beam 102 Figure 6.17: Assigned segments for modes of two beam 102 Figure 6.18 Assigned segments for modes of four beams 103 Figure 6.19: Assigned segments for modes of 16 beams 103 Figure 6.20: Reference partial pattern matching power per mode 104 Figure 6.21: BER and achieved rates for 1 beam system 105 Figure 6.22: BER and achieved rates for 2 beams system 105 Figure 6.23: BER and achieved rates for 4 beams system 106 Figure 6.25: The effect of turbulence strength – four beams 107 Figure 6.26: The effect of number of beams 108 Figure 6.27: The effect of modes separation 108 Figure 6.28: Intensity parameter C_I 110 Figure 6.30: Seeds priority parameter C_I 110 Figure 6.31: Too released assignment 111 Figure 6.32: Too restricted assignment 111 Figure 6.32: Too restricted assignment 111	Figure 6.10: Non-uniform seeds assignment comparison tensor formation	92
Figure 6.13: Non-uniform seeds assignments - three beams 95 Figure 6.14: Hybrid system construction options 96 Figure 6.15: Schematic for 16 received overlapped beams 98 Figure 6.16: Assigned segments for modes of one beam 102 Figure 6.17: Assigned segments for modes of two beam 102 Figure 6.18 Assigned segments for modes of four beams 103 Figure 6.19: Assigned segments for modes of 16 beams 103 Figure 6.20: Reference partial pattern matching power per mode 104 Figure 6.21: BER and achieved rates for 1 beam system 105 Figure 6.22: BER and achieved rates for 2 beams system 105 Figure 6.23: BER and achieved rates for 4 beams system 106 Figure 6.25: The effect of turbulence strength – four beams 107 Figure 6.26: The effect of number of beams 108 Figure 6.27: The effect of modes separation 108 Figure 6.28: Intensity parameter C_I 110 Figure 6.30: Seeds priority parameter C_I 110 Figure 6.31: Too released assignment 111 Figure 6.32: Too restricted assignment 111 Figure 6.32: Too restricted assignment 111	Figure 6.11: Non-uniform seeds assignments - single beam	95
Figure 6.14: Hybrid system construction options	Figure 6.12: Non-uniform seeds assignments - two beams	95
Figure 6.15: Schematic for 16 received overlapped beams 98 Figure 6.16: Assigned segments for modes of one beam 102 Figure 6.17: Assigned segments for modes of two beam 102 Figure 6.18: Assigned segments for modes of four beams 103 Figure 6.19: Assigned segments for modes of 16 beams 103 Figure 6.20: Reference partial pattern matching power per mode 104 Figure 6.21: BER and achieved rates for 1 beam system 105 Figure 6.22: BER and achieved rates for 2 beams system 105 Figure 6.23: BER and achieved rates for 4 beams system 106 Figure 6.24: BER and achieved rates for 16 beams system 106 Figure 6.25: The effect of turbulence strength – four beams 107 Figure 6.26: The effect of number of beams 108 Figure 6.27: The effect of modes separation 108 Figure 6.28: Intensity parameter C_I 110 Figure 6.29: Seeds numbers parameter C_I 110 Figure 6.30: Seeds priority parameter C_I 110 Figure 6.31: Too released assignment 111 Figure 6. 32: Too restricted assignment 111	Figure 6.13: Non-uniform seeds assignments - three beams	95
Figure 6.16: Assigned segments for modes of one beam	Figure 6.14: Hybrid system construction options	96
Figure 6.17: Assigned segments for modes of two beam	Figure 6.15: Schematic for 16 received overlapped beams	98
Figure 6.18 Assigned segments for modes of four beams	Figure 6.16: Assigned segments for modes of one beam	102
Figure 6.19: Assigned segments for modes of 16 beams 103 Figure 6.20: Reference partial pattern matching power per mode 104 Figure 6.21: BER and achieved rates for 1 beam system 105 Figure 6.22: BER and achieved rates for 2 beams system 105 Figure 6.23: BER and achieved rates for 4 beams system 106 Figure 6.24: BER and achieved rates for 16 beams system 106 Figure 6.25: The effect of turbulence strength – four beams 107 Figure 6.26: The effect of number of beams 108 Figure 6.27: The effect of modes separation 108 Figure 6.28: Intensity parameter C_I 110 Figure 6.29: Seeds numbers parameter C_I 110 Figure 6.30: Seeds priority parameter C_I 110 Figure 6.31: Too released assignment 111 Figure 6.32: Too restricted assignment 111	Figure 6.17: Assigned segments for modes of two beam	102
Figure 6.20: Reference partial pattern matching power per mode 104 Figure 6.21: BER and achieved rates for 1 beam system 105 Figure 6.22: BER and achieved rates for 2 beams system 105 Figure 6.23: BER and achieved rates for 4 beams system 106 Figure 6.24: BER and achieved rates for 16 beams system 106 Figure 6.25: The effect of turbulence strength – four beams 107 Figure 6.26: The effect of number of beams 108 Figure 6.27: The effect of modes separation 108 Figure 6.28: Intensity parameter C_I 110 Figure 6.29: Seeds numbers parameter C_I 110 Figure 6.30: Seeds priority parameter C_I 110 Figure 6.31: Too released assignment 111 Figure 6.32: Too restricted assignment 111	Figure 6.18 Assigned segments for modes of four beams	103
Figure 6.21: BER and achieved rates for 1 beam system.105Figure 6.22: BER and achieved rates for 2 beams system.105Figure 6.23: BER and achieved rates for 4 beams system.106Figure 6. 24: BER and achieved rates for 16 beams system.106Figure 6.25: The effect of turbulence strength – four beams107Figure 6.26: The effect of number of beams108Figure 6.27: The effect of modes separation108Figure 6.28: Intensity parameter C_I 110Figure 6.29: Seeds numbers parameter C_P 110Figure 6.30: Seeds priority parameter C_P 110Figure 6.31: Too released assignment111Figure 6. 32: Too restricted assignment111		
Figure 6.22: BER and achieved rates for 2 beams system. 105 Figure 6.23: BER and achieved rates for 4 beams system. 106 Figure 6. 24: BER and achieved rates for 16 beams system. 106 Figure 6.25: The effect of turbulence strength – four beams 107 Figure 6.26: The effect of number of beams 108 Figure 6.27: The effect of modes separation 108 Figure 6.28: Intensity parameter C_I . 110 Figure 6.29: Seeds numbers parameter C_I . 110 Figure 6.30: Seeds priority parameter C_I . 110 Figure 6.31: Too released assignment 111 Figure 6. 32: Too restricted assignment 111		
Figure 6.23: BER and achieved rates for 4 beams system. 106 Figure 6. 24: BER and achieved rates for 16 beams system. 106 Figure 6.25: The effect of turbulence strength – four beams 107 Figure 6.26: The effect of number of beams 108 Figure 6.27: The effect of modes separation 108 Figure 6.28: Intensity parameter C_I 110 Figure 6.29: Seeds numbers parameter C_I 110 Figure 6.30: Seeds priority parameter C_I 110 Figure 6.31: Too released assignment 111 Figure 6.32: Too restricted assignment 111	Figure 6.21: BER and achieved rates for 1 beam system.	105
Figure 6. 24: BER and achieved rates for 16 beams system. 106 Figure 6.25: The effect of turbulence strength – four beams 107 Figure 6.26: The effect of number of beams 108 Figure 6.27: The effect of modes separation 108 Figure 6.28: Intensity parameter C_I 110 Figure 6.29: Seeds numbers parameter C_N 110 Figure 6.30: Seeds priority parameter C_P 110 Figure 6.31: Too released assignment 111 Figure 6. 32: Too restricted assignment 111	Figure 6.22: BER and achieved rates for 2 beams system.	105
Figure 6.25: The effect of turbulence strength – four beams 107 Figure 6.26: The effect of number of beams 108 Figure 6.27: The effect of modes separation 108 Figure 6.28: Intensity parameter C_I 110 Figure 6.29: Seeds numbers parameter C_I 110 Figure 6.30: Seeds priority parameter C_I 110 Figure 6.31: Too released assignment 111 Figure 6.32: Too restricted assignment 111	Figure 6.23: BER and achieved rates for 4 beams system.	106
Figure 6.26: The effect of number of beams 108 Figure 6.27: The effect of modes separation 108 Figure 6.28: Intensity parameter C_I 110 Figure 6.29: Seeds numbers parameter C_N 110 Figure 6.30: Seeds priority parameter C_P 110 Figure 6.31: Too released assignment 111 Figure 6.32: Too restricted assignment 111	Figure 6. 24: BER and achieved rates for 16 beams system.	106
Figure 6.27: The effect of modes separation 108 Figure 6.28: Intensity parameter C_I 110 Figure 6.29: Seeds numbers parameter C_N 110 Figure 6.30: Seeds priority parameter C_P 110 Figure 6.31: Too released assignment 111 Figure 6.32: Too restricted assignment 111		
Figure 6.28: Intensity parameter C_I		
Figure 6.29: Seeds numbers parameter C_N	Figure 6.27: The effect of modes separation	108
Figure 6.30: Seeds priority parameter C_P	Figure 6.28: Intensity parameter C_I	110
Figure 6.30: Seeds priority parameter C_P	Figure 6.29: Seeds numbers parameter C_N	110
Figure 6. 32: Too restricted assignment		
Figure 6. 32: Too restricted assignment	Figure 6.31: Too released assignment	111
Figure 6.33: OAM re-use pattern to minimize cross-talk effect		
	Figure 6.33: OAM re-use pattern to minimize cross-talk effect	114