

Radiation Modification of Some Polymers and their Possible Biomedical and Industrial Applications

Thesis Submitted by

Mai Fouad Ahmed Elshahawy

B.Sc.(Chemistry) 2011 M.Sc. (Chemistry) 2016

For the requirement of Ph.D. Degree of Science in Chemistry

Prof. Dr. Al-Sayed Ahmed Soliman

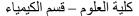
Professor Dr. of Organic Chemistry, Faculty of Science, Ain Shams University.

Prof. Dr. Amr El-Hag Ali Sayed

Professor. Dr. of Radiation Chemistry, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority

Prof. Dr. Ghada A. Mahmoud

Professor. Dr. of Radiation Chemistry, head of polymers chemistry department,
National center for Radiation Research and Technology,
Egyptian Atomic Energy Authority.


Prof.Dr. Amany Ismail Mahmoud Rafaat

Professor. Dr. of Radiation Chemistry, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority

Tο

Department of Chemistry
Faculty of Science, Ain Shams University
2020

Radiation Modification of Some Polymers and their Possible Biomedical and Industrial Applications

By

Mai Fouad Ahmed Elshahawy

Thesis Advisors

Approved

Prof. Dr. Al-Sayed Ahmed Soliman

Professor Dr. of Organic Chemistry, Faculty of Science, Ain Shams University.

Prof. Dr. Amr El-Hag Ali Sayed

Professor Dr. of Radiation Chemistry, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority

Prof. Dr. Ghada A. Mahmoud

ProfessorDr. of Radiation Chemistry head of polymers chemistry department, National center for Radiation Research and Technology, Egyptian Atomic Energy Authority.

Prof.Dr. Amany Ismail Mahmoud Rafaat

Professor Dr. of Radiation Chemistry, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-Shafi

Acknowledgment

First of all, thanks to GOD for the infinite help and persistent supply ofpatience and efforts to accomplish this work.

I would like to express my deep gratitude and thanks to **Prof.Dr. Al-Sayed A. Soliman,** Faculty of Science, Ain Shams University, for his interest, and deep concern in this work.

I offer my sincerest gratitude to my supervisor, Prof. Dr. Amr El-Hag Ali Sayed, National Center for Radiation Research and Technology, who for his continues guidance, honest assistance interest, wise guidance, kind supervision, and continuous encouragement throughout this work.

Deepest thanks and sincere gratitude to **Prof. Dr. Ghada A. Mohmoud,** Prof. of Radiation Chemistry, National Center for Radiation Research and Technology (NCRRT), for suggesting, planning the point of research, her eminent supervision and valuable discussions. Also, for her encouragement and support throughout this work.

I would like to offer my deep thanks to**Prof. Dr.Amany Ismail Raafat** Prof. of Radiation Chemistry, National Center for Radiation Research and Technology for suggesting, planning the point of research, for her supervision encouragement and support throughout this work. Also for her honest assistance to have this work done. I think without her help this work wouldn't come out.

I would like to give thanks for deep gratitude to **Dr. Asmaa Abu-Bakr Hassan,** Associate Professor, Radiation Biology Department, National Center for Radiation Research and Technology, for performing cytotoxicity evaluation and her fruitful discussion. Also, deep gratitude to **Dr. Eman Araby,** Associate Professor, Radiation Microbiology Department, National Center for Radiation Research and Technology, for antibacterial assessment and her good interpretation and discussion.

Special thanks to my all colleagues and staff members of Polymer
Chemistry Department, National Center for Radiation Research and Technology
(NCRRT) for their help and facilities provided throughout this work.
There are no enough words to express my gratitude to all of you"

This Work Is Dedicated
To My parents, my family, Without
Their Support, Endless Help and
Continues Encouragement All the Time
I cloud Never Finish This Work
So Giver of all my best for them and
give thanks

Thank you.....

Contents

Table of content

List of Abbreviations	
List of Figures	1
List of Tables	VII
Aim of work	IX
Abstract	XI
	ΛI
Chapter I	
Introduction	
1.1. Hydrogels: definition and classification	1
1.2. Hydrogel synthesis1.2.1 Hydrogel Synthesis by Physical Crosslinking	4
I-H-bonded hydrogel	4
II-lonic interaction	5 6
III-Heat induced aggregation (Maturation)	6
IV-Heating/cooling a polymer solution	7
V- Complex coacervation.	8
VI-Freeze-thawing	9
1.2.2. Chemical cross-linking	9
I- Chemical cross-linkers	9
1.2.3. Grafting	10
I-Chemical grafting	11
II- Radiation grafting	11
1.2.4. Radiation crosslinking.	12
I-Irradiation in aqueous state	12
II- Irradiation in paste-like state	14
1.3. Hydrogel characterization	15
1.3.1. Gelation	15
1.3.2. Swelling measurement	15
1.3.3. Surface topography	16
1.3.4. Chemical and Physical analysis	16
1.3.5. Biocompatibility evaluation	16
1.4. Improvement of hydrogel capabilities	17
I- hydrogel nanocomposites	17
II- Nanoparticles for photocatalysis	18
III-Hydrogel loaded with medicinal plant extract	21
1.5. Haemostatic medicinal plant extracts	23
I. Capsella bursa-pastoris (I.) Medik (shepherd's purse)	24
li. Salvadorapersica(miswak)	25
Iii. Achillea millefolium(yarrow)	25

Iv. Equisetum arvense I. (horsetail)	27
1.6. Applications of hydrogels	28
1.6.1. Photo catalytic wastewater treatment	29
1.6.2.Haemostatic dressing hydrogels	32
Chapter II	
Literature Review	
2.1. Radiation synthesis of hydrogels:-	35
2.2. Applications of the hydrogels:-	44
2.2.1. Industrial applications (photocatalysis for dyes degradation)	46
2.2.2. Biomedical applications (haemostaticdressing hydrogels)	72
Chapter III	
Materials and Experimental Techniques	
3.1. Materials	91
3.2. Experimental techniques	93
3.2.1. Gamma radiation source	
3.2.2. Preparation of Graphene oxide	93
3.2.3. Preparation of reduced graphene oxide	93
3.2.4. Preparation of (AAc/PVA) hydrogels	94
3.2.5. Preparation of (AAc/PVA)-GO and (AAc/PVA)-RGO nano- composites	94
3.2.6. Preparation of (AAc/PVA)-GO- TiO ₂ and (aac/PVA)-RGO- TiO ₂ nanocomposites	94
3.2.7. Preparation of medicinal plant extract	95
3.2.8. Preparation of (HEC/CP) based haemostatic dressing hydrogels.	95
3.3. Characterization methods	
Gel content	96
3.3.1. Swelling degree	96
3.3.2. Freeze drying process	97
3.3.3. Fourier transform infrared spectroscopy (FTIR)	97
3.3.4. The X-ray Diffraction (XRD)	97
3.3.5. Raman spectroscopy	97
3.3.6. Scanning electron microscopy (SEM)	97
3.3.7. Transition electron microscopy measurements (TEM)	97
3.3.8. Ultraviolet (UV) measurements	98
3.4. Evaluation of prepared hydrogels and nanocomposites	J
3.4.1. Evaluation of (AAc/PVA) hydrogel as photocatalysis	98
Photocatalytic Decolorization Experiments	-
3.4.2. Evaluation of the (HEC/CP) –MPE haemostatic sponges Blood collection and platelet isolation	99

3.4.2.1. Preparation of Simulated Body Fluid (SBF)	99
3.4.2.2. Porosity measurement	100
3.4.2.3. Measurement of density of freeze-dried sponges	100
3.4.2.4. In vitro Hydrolytic biodegradation	100
3.4.2.5. Fluid absorption Degree	101
3.4.2.6. Milk-clotting activities	101
3.4.2.7. Whole blood clotting test	101
3.4.2.8. In vitro blood plasma coagulation assay	102
3.4.2.9. Platelet adhesion and aggregation	103
3.4.2.10. Protein adsorption	103
3.4.2.11. In-vitro Antimicrobial activity	104
3.4.2.12. In vitro cytotoxicity evaluation (MTT) assay	104
3.4.2.13. In- vivo haemostatic performance evaluation	106
I- haemostasis of lacerated liver	400
li- histological evaluation	106
Chapter IV	
Results and Discussion	
Part A	
4A.1. Characterization of GO and RGO 4A.1.1. X-ray diffraction (XRD)	107
•	100
4A.1.2. Raman spectrum analysis	109
4A.1.3. Fourier Transforms Infrared Spectroscopy (FTIR)	110
4A.1.4. Scanning Electron Microscope (SEM)	112
4A.1.5. Transmission Electron Microscope (TEM)	113
4A.2. Radiation synthesis of (AAc/PVA) hydrogel	113
4A.2.1.Optimizing the radiation synthesis conditions of AAc/PVA hydrogel	116
4A.3. Radiation synthesis of (AAc/ PVA) based GO/TiO ₂ ,	117
RGO/TiO₂nanocomposite hydrogels	117
4A.3.1. Effect of GO and RGO content on the gelation percentage of the nanocomposites	118
4A.4.Characterization of the (AAc/ PVA) hydrogel and its	
corresponding GO/TiO ₂ , RGO/TiO ₂ nanocomposite hydrogels	119
4A.4.1. Swelling Behavior	_
4A.4.1.1. Effect of total feed concentration	119
4A.4.1.2. Effect of the irradiation dose	120
4A.4.1.3. Effect of the feed solution composition	121

4A.4.1.4. Effect of nano filler content	122
4A.4.1.5. Effect of pH of medium	124
4A.4.2. X-Ray diffraction (XRD)	125
4A.4.3. Fourier transforms infrared spectroscopy (FTIR)	128
4A.4.4. Scanning electron microscope (SEM)	131
4A.4.5. Transmission electron microscope (TEM)	132
4A.5. Photocatalytic Activity	133
4A.5.1.Photocatalytic decolorization of DB71 dye	137
4A.5.2. Effect of Initial DB71 dye concentration	138
4A.5.3. Effect of pH	140
4A.5.4. Effect of hydrogen peroxide (H ₂ O ₂)	142
4A.5.5 The reaction kinetics	144
4A.5.6. Reusability of (AAc/ PVA)-RGO-TiO₂nanocomposite	148
Part B	4=0
4B.1. Radiation synthesis of haemostatic dressing hydrogels	150
4B.2. Radiation synthesis and characterization of (HEC/Cp) hydrogels	152
4B.3. Gelation degree	154
4B.3.1.Effect of (HEC) feed solution concentration	154
4B.3.2.Effect of carbopol content	155
4B.4. Swelling characteristics	156
I- Effect of carbopol content	150
4B.5. Preparation and characterization of the (HEC/Cp) haemostatic dressing hydrogels reinforced with different haemostatic medicinal plant extract (MPE).	157
4B.5.1. Effect of medicinal plant extract on the gelation degree	158
4B.6. Preparation of porous the different spongy (HEC/Cp) -MPE	
haemostatic dressings	159
4B.6.1. Porosity on the developed spongy (HEC/Cp)-MPE haemostatic dressings	160
4B.6.2. Density on the developed spongy (HEC/Cp) -MPE haemostatic dressings	162
4B.6.3. Surface morphology	162
4B.6.4. Swelling characteristics	165
4B.6.5. Fluid absorption capacity	166
4B.6.6. In vitro biodegradation on the developed spongy (HEC/Cp)- MPE haemostatic dressings	170
4B.7. In-vitro assessment of (HEC/Cp)-MPE haemostatic activity	172
4B.7.1. Astringent characteristics	173

4B.7.2. Blood absorption efficiency	175
4B.7.3.Swelling in plasma	177
4B.7.4. Whole blood clotting assay and SEM analysis	179
4B.7.5. Protein adsorption	184
4B.7.6. Antimicrobial performance	186
4B.7.7 In vitro cytocompatibility	187
4B.8. Biological activties of (HEC/Cp)-MPE haemostatic dressing 4B.8.1. In-vitro Blood coagulation activity assay	189
4B.8.2. Platelet adhesion and SEM analysis	190
4B.8.3. Haemostasis time and weight of blood of lacerated liver	195
4B.8.4. Total serum Calcium concentration	198
4B.8.5. Total serum transferrin	201
4B.8.6. Histological examination	204
References.	205
Summary and conclusions.	239
Arabic summary and conclusions.	247
Arabic abstract	

List of Abbreviations

AAc Acrylic acid

PVA Polyvinyl Alcohol

HEC Hydroxyethyl Cellulose

Carbopol 940

GG Graphite

GO Graphene Oxide

RGO Reduced graphene oxide

TiO₂ Titantium dioxide nanoparticles

Direct blue dye 71

NPs Nanoparticles

MPE Medinical Plant Extract

SBF Simulated body fluide

PBS Phosphate buffer saline

BSA Bovine serum albumin

S aureus Staphylococcus aureus

E. coli Escherichia coli.

TF Transferrin

List of Figures

Figure (1):	Schematic illustration of (a) chemical (covalent crosslinking) and (b) physical (non covalent	4
	crosslinking). Examples of physical crosslinking are (c)	
	helix formation by hydrogen bonds e.g. crosslinking of	
	carragenan and agar-agar and (d) cation chelation e.g	
	crosslinking of alginate	
Figure (2):	Hydrogel network formation due to intermolecular H-	5
	bonding in CMC at low pH.	
Figure (3):	Ionotropic gelation by interaction between anionic	6
	groups on alginate (COO-) with divalent metal ions	
Figure (a)	(Ca ²⁺).	_
Figure (4):	Maturation of gum arabic causing the aggregation of	7
	proteinaceous part of molecules leading to cross-linked hydrogel network.	
Figure (5):	Complex coacervation between a polyanion and a	8
ga. e (5).	polycation	
Figure (6):	Schematic illustration of using chemical crosslinker to	10
	obtain crosslinked hydrogel network.	
Figure (7):	Grafting of a monomer on performed polymeric	11
	backbone leading to infinite branching and crosslinking.	
Figure (8):	Structure of (A) Graphene Oxide (GO) and (B) Reduced	21
	graphene oxide (RGO)	
Figure (9):	Picture of Capsella bursa-pastoris (L.) Medik plant	24
Figure (10):	Picture of SalvadoraPersica (Miswak) plant	25
Figure (11):	Picture of Achilleamille folium, known as yarrow plant	26
Figure (12):	Picture of Equisetum arvense, known as Horsetail plant	27
Figure (13):	Images of wastewater	30
Figure (14):	photocatalysis process	31
Figure (15):	Image of haemostasis process	33
Figure (16):	Images of forms for hemostatic hydrogels (A)	33
	dressings, (B) sponges, (C) powders, and (D) injection	
	gel.	
Figure (17):	photographic picture of plant extracts	93
Figure (18):	XRD patterns of (a) Graphite, (b) GO and (c) RGO.	108
Figure (19):	Raman spectra of (a) GO and (c) RGO.	110
Figure (20):	FTIR spectra of (a) GG, (b) GO and (c) RGO	111
Figure(21):	SEM of (a) GO and (b) RGO	112
Figure (22):	TEM of (a) GO and (b) RGO	113