

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

The potential protective role of Astaxanthin on Doxorubicin-induced cardiac toxicity in rats

Thesis
Submitted for Partial Fulfillment of the Master
Degree in Physiology

By

Marina Sorial Mina Derias

Demonstrator of Physiology Faculty of Medicine, Ain Shams University Under Supervision of

Prof. Abd El Rahman Fahmy Ahmed Sabaa

Professor of Physiology Faculty of Medicine – Ain Shams University

Prof. Abd El Moneim Mahmoud Ali Osman

Professor of Pharmacology National Cancer Institute – Cairo University.

Dr. Abd El-Hamid Abou el magd Mohamed

Assistant Professor of Physiology Faculty of Medicine – Ain Shams University

Dr. Doaa Ahmed Abou-bakr Darwish

Lecturer of Physiology Faculty of Medicine – Ain Shams University

> Physiology department Faculty of Medicine Ain Shams University 2020

Acknowledgement

First, thanks are all due to Allah for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof. Dr. Abd El Rahman Fahmy Ahmed Sabaa,** Professor of Physiology, Faculty of Medicine – Ain Shams University for his great support and advice, his valuable remarks that gave me the confidence and encouragement to fulfill this work.

I am deeply grateful to **Prof. Dr. Abd El Moneim Mahmoud Ali Osman**, Professor of Pharmacology, National Cancer Institute – Cairo University for adding a lot to this work by his experience and for his keen supervision.

I am also thankful to **Dr. Abd El-Hamid Abou el magd Mohamed**, Assistant Professor of Physiology, Faculty of Medicine – Ain Shams University for his valuable supervision, co-operation and direction that extended throughout this work.

I would like to direct my special thanks to **Dr. Doaa**Ahmed Abou-bakr Darwish, Lecturer of Physiology, Faculty of Medicine – Ain Shams University, for her invaluable help, fruitful advice, continuous support offered to me and guidance step by step till this essay finished.

I am extremely sincere to my family who stood beside me throughout this work giving me their support.

Marina Sorial Mina Derias

List of Contents

	<u>Page</u>
Acknowledgment	
List of abbreviations	i
List of tables	iv
List of figures	viii
Abstract	X
Introduction	1
Aim of the Work	3
Review of Literature	4
Doxorubicin (Dox)	4
Astaxanthin (ATX)	17
Materials and Methods	28
Results	52
Discussion	79
Summary and Conclusion	86
References	90
Appendix	119
Arabic Summary	

List of Abbreviations

ATP Adenosine triphosphate

ASK1 Apoptosis-signal regulating kinase-1

ATX Astaxanthin

BBB Blood Brain Barrier

BP Blood pressure

cTnI Cardiac Troponin I

JNK c-Jun NH2-terminal kinase

Cu²⁺ Copper ion

Q-T_c Corrected Q-T

CRP C-reactive protein

COX-1 Cyclooxygenase-1 enzyme

DBP Diastolic blood pressure

DOX Doxorubicin

DIC Doxorubicin induced cardiotoxicity

DOXol Doxorubicinol

ECG Electrocardiogram

eNOS Endothelial nitric oxide synthases

ELISA Enzyme-linked immunosorbent assay

ERK1/2 Extracellular signal-regulated kinase

FBW Final body weight

HRT Half relaxation time

HF Heart failure

HR Heart rate

HRP Horseradish peroxidase

HER2 Human epidermal growth factor receptor 2

HFE Human hemochromatosis protein

H₂O₂ Hydrogen peroxide

List of Abbreviations (Cont.)

OH Hydroxyl radicals

IR SENSOR Infrared sensor

IL-1 β Interleukin-1 β

IL-6 Interleukin-6

i.p. Intraperitoneal

Fe IRON

IRP-1 Iron regulatory protein 1
IREs Iron-responsive elements

I/R Ischemia/Reperfusion

KHB Krebs-Henseleit Bicarbonate buffer solution

LSD Least significant difference

LVEF Left ventricular ejection fraction

LVW Left ventricular weight

MMP Matrix metalloproteinase

MAP Mean arterial blood pressure

MAPK Mitogen-activated protein kinase

MFR Myocardial flow rate

NSCS Neural stem cells

NADPH Nicotinamide adenine dinucleotide phosphate

NO Nitric oxide

NOS Nitric oxide synthases NF- κ B Nuclear factor-kappa β Q-T₀ Observed Q-T interval

O.D. Optical Density

O₂ Oxygen

PT Peak developed tension

p-ERK Phospho extracellular signal-regulated kinase

PI3K Phosphoinositide 3-kinase

List of Abbreviations (Cont.)

PUFA Polyunsaturated fatty acids

ROS Reactive oxygen species
RVW Right ventricular weight

SERCA2a Sarcoplasmic/ endoplasmic reticulum Ca (2+)

ATPase 2a

p-Stat3 Signal transducer and activator of transcription 3

SHR Spontaneously hypertensive rats

SEM Standard error of mean

SPSS Statistical Program for Social Science

 O_2^- Superoxide

SBP Systolic blood pressure

USFDA The United States Food and Drug Administration

TPT Time to peak tension

TNF-α Tumor necrosis factor-α

List of Tables

Table	Title	Page
	Materials & Methods	<u> </u>
a	KHB Composition in mmol/L, the stock solutions and the volume used from the stock solutions.	35
	Results	
1	Final Body Weight, Right ventricular weight, Right ventricular weight index, Left ventricular weight and Left ventricular weight index in the different studied groups.	53
2	Systolic Blood Pressure, Diastolic Blood Pressure and Mean Arterial Pressure in the different studied groups.	58
3	Heart Rate, PR interval duration, QRS complex duration, R voltage, observed QT interval duration and corrected QT interval duration in the different studied groups.	60
4	Chronotropic activity from isolated heart study in the different studied groups.	63
5	Peak Tension and Peak Tension/Left Ventricular Weight from isolated heart study in the different studied groups.	66
6	Time to Peak Tension and Half Relaxation Time from isolated heart study in the different studied groups.	69
7	Myocardial Flow Rate and Myocardial Flow Rate/ Left Ventricular Weight from isolated heart study in the different studied groups.	73
8	Plasma cardiac Troponin I, plasma Cytochrome C and Cardiac Tissue Iron in the different studied groups.	76
9	Final Body Weight, Right ventricular weight, Right ventricular weight index, Left ventricular weight and Left ventricular	119

Table	Title	Page
	weight index in Control Group.	
10	Final Body Weight, Right ventricular weight, Right ventricular weight index, Left ventricular weight and Left ventricular weight index in DOX- treated Group.	120
11	Final Body Weight, Right ventricular weight, Right ventricular weight index, Left ventricular weight and Left ventricular weight index in ATX- treated Group.	121
12	Final Body Weight, Right ventricular weight, Right ventricular weight index, Left ventricular weight and Left ventricular weight index in ATX+DOX treated Group.	122
13	Systolic Blood Pressure, Diastolic Blood Pressure and Mean Arterial Pressure in Control Group.	123
14	Systolic Blood Pressure, Diastolic Blood Pressure and Mean Arterial Pressure in DOX- treated Group.	124
15	Systolic Blood Pressure, Diastolic Blood Pressure and Mean Arterial Pressure in ATX- treated Group.	125
16	Systolic Blood Pressure, Diastolic Blood Pressure and Mean Arterial Pressure in ATX+DOX treated Group.	126
17	Heart Rate, PR interval duration, QRS complex duration, R voltage, QT interval observed duration and QT interval corrected duration in Control Group.	127
18	Heart Rate, PR interval duration, QRS complex duration, R voltage, QT interval observed duration and QT interval corrected duration in DOX-treated Group.	128
19	Heart Rate, PR interval duration, QRS	129

Table	Title	Page
	complex duration, R voltage, QT interval	
	observed duration and QT interval corrected	
	duration in ATX-treated Group.	
20	Heart Rate, PR interval duration, QRS	
	complex duration, R voltage, QT interval	130
	observed duration and QT interval corrected	150
	duration in ATX+DOX treated Group.	
21	Chronotropic activity from isolated heart	131
	study in Control Group.	131
22	Chronotropic activity from isolated heart	132
	study in DOX-treated Group.	152
23	Chronotropic activity from isolated heart	133
	study in ATX-treated Group.	100
24	Chronotropic activity from isolated heart	134
	study in ATX+DOX treated Group.	
25	Peak Tension and Peak Tesion/Left	
	Ventricular Weight from isolated heart study	135
26	in Control Group.	
26	Peak Tension and Peak Tesion/Left	127
	Ventricular Weight from isolated heart study	136
27	in DOX-treated Group.	
27	Peak Tension and Peak Tesion/Left	137
	Ventricular Weight from isolated heart study	13/
28	in ATX-treated Group. Peak Tension and Peak Tesion/Left	
28		138
	Ventricular Weight from isolated heart study in ATX+DOX treated Group.	130
29	Time to Peak Tension and Half Relaxation	
49	Time from isolated heart study in Control	139
	Group.	137
30	Time to Peak Tension and Half Relaxation	
	Time from isolated heart study in DOX-	140
	treated Group.	
31	Time to Peak Tension and Half Relaxation	141

Table	Title	Page
	Time from isolated heart study in ATX-	
	treated Group.	
32	Time to Peak Tension and Half Relaxation	
	Time from isolated heart study in	142
	ATX+DOX treated Group.	
33	Myocardial Flow Rate and Myocardial Flow	
	Rate/ Left Ventricular Weight from isolated	143
	heart study in Control Group.	
34	Myocardial Flow Rate and Myocardial Flow	
	Rate/ Left Ventricular Weight from isolated	144
	heart study in DOX-treated Group.	
35	Myocardial Flow Rate and Myocardial Flow	
	Rate/ Left Ventricular Weight from isolated	145
	heart study in ATX-treated Group.	
36	Myocardial Flow Rate and Myocardial Flow	
	Rate/ Left Ventricular Weight from isolated	146
	heart study in ATX+DOX treated Group.	
37	Plasma levels of cardiac Troponin I,	
	Cytochrome C and Cardiac tissue Iron in	147
	Control Group.	
38	Plasma levels of cardiac Troponin I,	
	Cytochrome C and Cardiac tissue Iron in	148
	DOX-treated Group.	
39	Plasma levels of cardiac Troponin I,	
	Cytochrome and Cardiac tissue Iron in ATX-	149
	treated Group.	
40	Plasma levels of cardiac Troponin I,	
	Cytochrome C and Cardiac tissue Iron in	150
	ATX+DOX treated Group.	